BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Hydrocarbons"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Characterization of niobium-zirconium mixed oxide as a novel catalyst for selective catalytic reduction of NO x
    (2009) Cayirtepe, I.; Naydenov, A.; Ivanov, G.; Kantcheva, M.
    The performance of mixed niobium-zirconium oxide in the SCR of NO x with propene in excess oxygen has been studied. The mixed oxide is prepared by impregnation of hydrated zirconia with acidic solution (pH 0.5) of peroxoniobium(V) complex, [Nb2(O2)3] 4+, ensuring ZrO2:Nb2O5 mole ratio of 6:1. The calcined sample (denoted as 25NbZ-P) has the structure of Zr 6Nb2O17. According to the catalytic test, the conversion of NO x over the 25NbZ-P catalyst passes through a maximum at 220 °C. Based on the in situ FT-IR results, a reaction mechanism is proposed with nitroacetone and NCO species as the key reaction intermediates. The results of the investigation show that the catalytic properties of the Zr6Nb2O17 solid solution could be of interest regarding the development of low-temperature catalyst for the SCR of NO x with hydrocarbons. © 2009 Springer Science+Business Media, LLC.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons
    (Academic Press Inc., 2017) Topuz, F.; Uyar, T.
    Polycyclic aromatic hydrocarbons (PAHs) are the byproducts of the incomplete combustion of carbon-based fuels, and have high affinity towards DNA strands, ultimately exerting their carcinogenic effects. They are ubiquitous environmental contaminants, and can accumulate on tissues due to their lipophilic nature. In this article, we describe a novel concept for PAH removal from aqueous solutions using cyclodextrin-functionalized mesostructured silica nanoparticles (CDMSNs) and pristine mesostructured silica nanoparticles (MSNs). The adsorption applications of MSNs are greatly restricted due to the absence of surface functional groups on such particles. In this regard, cyclodextrins can serve as ideal functional molecules with their toroidal, cone-type structure, capable of inclusion-complex formation with many hydrophobic molecules, including genotoxic PAHs. The CDMSNs were synthesized by the surfactant-templated, NaOH-catalyzed condensation reactions of tetraethyl orthosilicate (TEOS) in the presence of two different types of cyclodextrin (i.e. hydroxypropyl-β-cyclodextrin (HP-β-CD) and native β-cyclodextrin (β-CD)). The physical incorporation of CD moieties was supported by XPS, FT-IR, NMR, TGA and solid-state 13C NMR. The CDMSNs were treated with aqueous solutions of five different PAHs (e.g. pyrene, anthracene, phenanthrene, fluorene and fluoranthene). The functionalization of MSNs with cyclodextrin moieties significantly boosted the sorption capacity (q) of the MSNs up to ∼2-fold, and the q ranged between 0.3 and 1.65 mg per gram CDMSNs, of which the performance was comparable to that of the activated carbon.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Cyclodextrin-grafted electrospun cellulose acetate nanofibers via "Click" reaction for removal of phenanthrene
    (Elsevier, 2014-06-30) Çelebioğlu, A.; Demirci, S.; Uyar, T.
    Beta-cyclodextrin (p-CD) functionalized cellulose acetate (CA) nanofibers have been successfully prepared by combining electrospinning and "click" reaction. Initially, p-CD and electrospun CA nanofibers were modified so as to be azide-p-CD and propargyl-terminated CA nanofibers, respectively. Then, "click" reaction was performed between modified CD molecules and CA nanofibers to obtain permanent grafting of CDs onto nanofibers surface. It was observed from the SEM image that, while CA nanofibers have smooth surface, there were some irregularities and roughness at nanofibers morphology after the modification. Yet, the fibrous structure was still protected. ATR-FTIR and XPS revealed that, CD molecules were successfully grafted onto surface of CA nanofibers. The adsorption capacity of p-CD-functionalized CA (CA-CD) nanofibers was also determined by removing phenanthrene (polycyclic aromatic hydrocarbons, PAH) from its aqueous solution. Our results indicate that CA-CD nanofibers have potential to be used as molecular filters for the purpose of water purification and waste water treatment by integrating the high surface area of nanofibers with inclusion complexation property of CD molecules.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water
    (Elsevier, 2017-08) Topuz, F.; Uyar, Tamer
    Cyclodextrins (CDs) are sugar-based cyclic oligosaccharides, which form inclusion complexes with small guest molecules through their hydrophobic cavity. Here we successfully synthesized highly porous poly-cyclodextrin (poly-CD) cryogels, which were produced under cryogenic conditions by the cross-linking of amine-functional CDs with PEG-based diepoxide cross-linker. The poly-CD cryogels showed aligned porous network structures owing to the directional freezing of the matrix, of which the pore size and architecture exposed variations depending on the composition of the reactants. The cryogels were employed for the removal of genotoxic polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions. They reached PAH sorption capacities as high as 1.25 mg PAH per gram cryogel. This high sorption performance is due to interactions between PAHs and the complete swollen network, and thus, is not restricted by interfacial adsorption. Given that the hydrophilic nature of the components, the sorption performance could only be attributed to the inclusion complex formation of CDs with PAH molecules. The poly-CD cryogels could be recycled with an exposure to ethanol and reused without any significant loss in the sorption capacity of PAHs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Rapid access to hydroxyfluoranthenes via a domino Suzuki–Miyaura/intramolecular Diels–Alder/ring-opening reactions sequence
    (American Chemical Society, 2022-04-07) Ahmadli, Dilgam; Şahin, Yeşim; Çalıkyılmaz, Eylül; Şahin, Onur; Türkmen, Yunus E.
    In this work, we developed an efficient method for the rapid construction of fluoranthene skeleton to access a variety of substituted hydroxyfluoranthenes. The 1-iodo-8-alkynylnaphthalene derivatives, which serve as substrates for the key fluoranthene-forming step, were prepared via selective monoalkynylative Sonogashira reactions of 1,8-diiodonaphthalene. The domino reaction sequence which involves a sequential Suzuki–Miyaura coupling, an intramolecular Diels–Alder reaction, and an aromatization-driven ring-opening isomerization has been shown to give substituted hydroxyfluoranthenes in up to 92% yield. This work demonstrates the utility of designing new domino reactions for rapid access to substituted polycyclic aromatic hydrocarbons (PAHs).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The response of mechanical and electronic properties of graphane to the elastic strain
    (AIP Publishing LLC, 2010) Topsakal, M.; Cahangirov, S.; Çıracı, Salim
    Based on first-principles calculations, we resent a method to reveal the elastic properties of recently synthesized monolayer hydrocarbon, graphane. The in-plane stiffness and Poisson’s ratio values are found to be smaller than those of graphene, and its yielding strain decreases in the presence of various vacancy defects and also at high ambient temperature. We also found that the band gap can be strongly modified by applied strain in the elastic range.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback