BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Human-in-the-loop stability analysis"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Adaptive control of cyberphysical human systems
    (2021-08) Tohidi, Seyed Shahabaldin
    This dissertation focuses on the control of cyberphysical human systems in the presence of actuators’ redundancy and constraints. A novel adaptive control tech-nique is proposed to allocate control signals among redundant actuators in the presence of uncertainty and actuator saturation. The proposed method does not require any uncertainty identification or persistency of excitation assumption. The stability of the proposed method is guaranteed using Lyapunov stability analysis. In addition, a modified projection operator that can be implemented to the adaptive control allocation is proposed. This operator enables the allo-cator to handle both magnitude and rate limits of actuators. A novel sliding mode controller with time-varying sliding surface is designed to complement the adaptive allocator and guarantee stability and reference tracking in the presence of uncertainty and actuator saturation. This controller is robust to both adap-tive control allocation error and external disturbance. Furthermore, an adaptive human model is proposed to mimic the human control response in the presence of uncertainty. The proposed structure is based on the model reference adaptive control, and the adaptive laws are obtained using the Lyapunov-Krasovskii stabil-ity criteria. To validate this model, an experimental setup is employed to collect data and a statistical analysis is conducted to measure the predictive power of the pilot model. Finally, the stability limits of a human-in-the-loop closed loop control system, where the plant to be controlled has redundant actuators with uncertain dynamics, are demonstrated. Various human models with and without time delays are investigated. Simulation results are provided to demonstrate the effectiveness of the proposed methods in each chapter.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize