Browsing by Subject "Hot Electron"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Hot electron interactions in nanostructures(1997) Kaya, Ismet InonuModern semiconductor growth and processing techiques have provided the capability of fabricating a huge variety of devices which have atomically precise layered structures and lateral patterns with nanometer sizes. This not only provided novel device possibilités but also opened a new field in condensed matter physics, so called mesoscopics. It does not seem likely that the mesoscopic electronic devices will be available in the near future. Two main obstacles for mesoscopic electronics are the low temperature requirements and the breakdown of the phase coherence of the carriers as their energies exceed the Fermi level. This strongly suggests the investigation of the excited carriers with energies well in excess of their thermal equilibrium energy as the dimensions shrink. In this thesis, the interactions of hot electrons in semiconductor and metal structures with deep submicron characteristic dimensions have been studied. Tunneling Hot Electron Transfer Amplifier (THETA) constructed by abrupt semiconductur heterojunctions is a perfect system to analyze the interaction of hot electrons with cold electrons and the other possible excitations in solids. Recently, it has been discovered that an electron multiplication effect took place in such devices under certain conditions and resulted in a transfer ratio of greater than unity. In this work a novel fabrication technique has been developed. It would make it possible to utilize this effect for fabrication of a high frequency oscillator in the THz regime, in a future work. In addition, a kind of lateral THETA device has been constructed using a Two Dimensional Electron Gas structure. Electron multiplication effect for the first time has been observed in 2DEG structures. Moreover, the dependence of the effect on parameters such as injection energy, emitter and collector barrier heights and electron transit length has been investigated. The other direction of the work has been the investigation of metal wires under extremely high current densities. A strong nonlinearity in conductivity is introduced when a free standing submicrometer wire is biased to heat upto very high temperatures. The geometry of two crossing wires has been investigated under this condition.Item Open Access Temperature dependent hot electron transport in slightly lattice mismatched AlInN/AlN/GaN heterostructures(National Institute of Research and Development for Optoelectronics, 2014-10) Ilgaz, A.; Gökden, S.; Tülek, R.; Teke, A.; Özçelik, S.; Özbay, EkmelIn this work, the hot-electron transport properties of AlInN/AlN/GaN HEMT structures with a high sheet electron density of 4.84x10(13) cm(-2) grown by MOCVD (Metal Organic Chemical Vapor Deposition) on sapphire substrate were investigated at lattice temperature ranging from 10 K to 300 K. High speed current voltage measurements and Hall measurements were used to study hot-electron transport. Current-voltage characteristics show that current and drift velocity increase linearly but deviate from the linearity towards high voltages, as would be expected from the increased scattering of hot electrons with LO phonons. However, no saturation of current and drift velocity were observed at the highest voltage reached. Drift velocities were deduced as approximately 6.7x10(6) and 6.1x10(6) cm/s at an electric field of around E similar to 23 kV/cm at lattice temperatures T-L = 10 K and 300 K, respectively. To obtain the electron temperature as a function of the applied electric field and power loss as a function of the electron temperature, the so-called mobility comparison method with power balance equations were used. The effect of hot-phonon production on the phonon lifetime and effective energy relaxation of hot electrons was investigated as a function of lattice temperature.