BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Histopathological images"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Kelime histogram modeli ile histopatolojik görüntü sınıflandırılması
    (IEEE, 2011-04) Özdemir, Erdem; Sökmensüer, C.; Gündüz-Demir, Çiğdem
    Colon cancer, which is one of the most common cancer type, could be cured with its early diagnosis. In the current practice of medicine, there are many screening techniques such as colonoscopy, sigmoidoscopy, and stool test, however the most effective and most widely used method for cancer diagnosis is to take tissue sections with biopsy and examine them under a microscope. As this examination is based on visual interpretation, it may lead to subjective decisions and diagnostic differences among pathologists. The need of reducing inter-variability in cancer diagnosis has led to studies for extraction of features from biopsy images and development of algorithms that give objective results. In this paper, we propose a method for the automated classification of a colon tissue image with the features extracted from a histogram that models the existence of image regions determined in an unsupervised way. Experiments on colon tissue images show that the proposed method leads to more successful results compared to its counterparts. Moreover, the proposed method, which uses color intensities for feature extraction, has the potential of giving better results with the use of additional features. © 2011 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Tissue object patterns for segmentation in histopathological images
    (ACM, 2011) Gündüz-Demir, Çiğdem
    In the current practice of medicine, histopathological examination is the gold standard for routine clinical diagnosis and grading of cancer. However, as this examination involves the visual analysis of biopsies, it is subject to a considerable amount of observer variability. In order to decrease the variability, it has been proposed to develop systems that mathematically model the histopathological tissue images and automate the analysis. Segmentation constitutes the first step for most of these automated systems. Nevertheless, the segmentation in histopathological images remains a challenging task since these images typically show variances due to their complex nature and may include a large amount of noise and artifacts due to the tissue preparation procedures. In our research group, we recently developed different segmentation algorithms that rely on representing a tissue image with a set of tissue objects and using the structural pattern of these objects in segmentation. In this paper, we review these segmentation algorithms, discussing their clinical demonstrations on colon tissues. © 2011 ACM.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Two-tier tissue decomposition for histopathological image representation and classification
    (Institute of Electrical and Electronics Engineers, 2015) Gultekin, T.; Koyuncu, C. F.; Sokmensuer, C.; Gunduz Demir, C.
    In digital pathology, devising effective image representations is crucial to design robust automated diagnosis systems. To this end, many studies have proposed to develop object-based representations, instead of directly using image pixels, since a histopathological image may contain a considerable amount of noise typically at the pixel-level. These previous studies mostly employ color information to define their objects, which approximately represent histological tissue components in an image, and then use the spatial distribution of these objects for image representation and classification. Thus, object definition has a direct effect on the way of representing the image, which in turn affects classification accuracies. In this paper, our aim is to design a classification system for histopathological images. Towards this end, we present a new model for effective representation of these images that will be used by the classification system. The contributions of this model are twofold. First, it introduces a new two-tier tissue decomposition method for defining a set of multityped objects in an image. Different than the previous studies, these objects are defined combining texture, shape, and size information and they may correspond to individual histological tissue components as well as local tissue subregions of different characteristics. As its second contribution, it defines a new metric, which we call dominant blob scale, to characterize the shape and size of an object with a single scalar value. Our experiments on colon tissue images reveal that this new object definition and characterization provides distinguishing representation of normal and cancerous histopathological images, which is effective to obtain more accurate classification results compared to its counterparts.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback