Browsing by Subject "Histogramming"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Histogram of oriented rectangles: a new pose descriptor for human action recognition(Elsevier BV, 2009-09-02) İkizler, N.; Duygulu, P.Most of the approaches to human action recognition tend to form complex models which require lots of parameter estimation and computation time. In this study, we show that, human actions can be simply represented by pose without dealing with the complex representation of dynamics. Based on this idea, we propose a novel pose descriptor which we name as Histogram-of-Oriented-Rectangles (HOR) for representing and recognizing human actions in videos. We represent each human pose in an action sequence by oriented rectangular patches extracted over the human silhouette. We then form spatial oriented histograms to represent the distribution of these rectangular patches. We make use of several matching strategies to carry the information from the spatial domain described by the HOR descriptor to temporal domain. These are (i) nearest neighbor classification, which recognizes the actions by matching the descriptors of each frame, (ii) global histogramming, which extends the idea of Motion Energy Image proposed by Bobick and Davis to rectangular patches, (iii) a classifier-based approach using Support Vector Machines, and (iv) adaptation of Dynamic Time Warping on the temporal representation of the HOR descriptor. For the cases when pose descriptor is not sufficiently strong alone, such as to differentiate actions "jogging" and "running", we also incorporate a simple velocity descriptor as a prior to the pose based classification step. We test our system with different configurations and experiment on two commonly used action datasets: the Weizmann dataset and the KTH dataset. Results show that our method is superior to other methods on Weizmann dataset with a perfect accuracy rate of 100%, and is comparable to the other methods on KTH dataset with a very high success rate close to 90%. These results prove that with a simple and compact representation, we can achieve robust recognition of human actions, compared to complex representations. © 2009 Elsevier B.V. All rights reserved.Item Open Access On a parameter estimation method for Gibbs-Markov random fields(IEEE, 1994) Gürelli, M. I.; Onural, L.This correspondence is about a Gibbs-Markov random field (GMRF) parameter estimation technique proposed by Derin and Elliott. We will refer to this technique as the histogramming (H) method. First, the relation of the H method to the (conditional) maximum likelihood (ML) method is considered. Second, a bias-reduction based modification of the H method is proposed to improve its performance, especially in the case of small amounts of image data.Item Open Access Recognizing actions from still images(IEEE, 2008-12) İkizler, Nazlı; Cinbiş, R .Gökberk; Pehlivan, Selen; Duygulu, PınarIn this paper, we approach the problem of under- standing human actions from still images. Our method involves representing the pose with a spatial and ori- entational histogramming of rectangular regions on a parse probability map. We use LDA to obtain a more compact and discriminative feature representation and binary SVMs for classification. Our results over a new dataset collected for this problem show that by using a rectangle histogramming approach, we can discriminate actions to a great extent. We also show how we can use this approach in an unsupervised setting. To our best knowledge, this is one of the first studies that try to recognize actions within still images. © 2008 IEEE.