Browsing by Subject "High temperature solid-state reaction"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe (Ti) K-edge on photocatalyst properties of SrTi (1-x)Fe xO (3-δ)(2012) Ghaffari, M.; Liu, T.; Huang H.; Tan O.K.; Shannon, M.In this study, the STF x photocatalyst powder was synthesized with a high temperature solid state reaction. The microstructures and surface of samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electronic properties and local structure of the perovskite STF x (0 ≤ x ≤ 1) systems were probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The XPS results revealed that with increasing iron doping, the amount of Fe 3+ and Fe 4+ increased significantly. The X-ray absorption data are discussed in detail with respect to the Fe (Ti) K-edge. The substitution of iron by titanium increased the Ti (Fe)-O first shell disorder factors that can be explained by increasing the oxygen vacancies. Oxygen vacancies or defects act as electron traps, which could capture the photo induced electrons and thus could effectively inhibit the recombination of the photo induced electrons and holes. Moreover due to the substitution of Ti with Fe, lattice shrinkage was observed and the largest derivation from the Gaussian distribution in STF x was from those samples with x = 0.6 and x = 0.8. The substitution of iron by titanium increased the iron valence state, hence the formation of the Jahn-Teller Fe 4+ ion. With increasing iron dopant the [Ti(Fe)-O] ave decreased and bond length of [Ti-O] and the consequent [Ti-O-Ti] increased and this phenomenon affected the photocatalyst and photo degradation properties of material and also decreased its efficiency. © 2012 Elsevier B.V. All rights reserved.Item Open Access Preparation, surface state and band structure studies of SrTi (1-X)Fe (x)O (3-δ) (x = 0-1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy(2012) Ghaffari, M.; Shannon, M.; Hui H.; Tan O.K.; Irannejad, A.In this report, SrTi (1 - x)Fe (x)O (3 - δ) photocatalyst powder was synthesized by a high temperature solid state reaction method. The morphology, crystalline structures of obtained samples, was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), respectively. The electronic properties and local structure of the perovskite STF x (0 ≤ x ≤ 1) systems have been probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The effects of iron doping level x (x = 0-1) on the crystal structure and chemical state of the STF x have been investigated by X-ray photoelectron spectroscopy and the valence band edges for electronic band gaps were obtained for STF x by ultraviolet photoelectron spectroscopy (UPS). A single cubic perovskite phase of STF x oxide was successfully obtained at 1200 °C for 24 h by the solid state reaction method. The XPS results showed that the iron present in the STF x perovskite structure is composed of a mixture of Fe 3+ and Fe 4+ (SrTi (1 - x)[Fe 3+, Fe 4+] (x)O (3 - δ)). When the content x of iron doping was increased, the amount of Fe 3+ and Fe 4+ increased significantly and the oxygen lattice decreased on the surface of STF x oxide. The UPS data has confirmed that with more substitution of iron, the position of the valence band decreased. © 2011 Elsevier B.V. All rights reserved.