Browsing by Subject "High surface area"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Conversion of wooden structures into porous SiC with shape memory synthesis(2011) Dhiman, R.; Petrunin V.; Rana, K.; Morgen P.Synthesis of structured silicon carbide materials can be accomplished using wooden materials as the carbon source, with various silicon impregnation techniques. We have explored the low cost synthesis of SiC by impregnation of carbon from wood with SiO gas at high temperatures, which largely retains the structure of the starting wood (shape memory synthesis). Suitably structured, porous SiC could prove to be an important type of catalyst support material. Shape memory synthesis (SMS) has earlier been tried on high surface area carbon materials. Here we have made an extensive study of SMS on carbon structures obtained from different types of wood. © 2011 Elsevier Ltd and Techna Group S.r.l.Item Open Access Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(VI)(Elsevier, 2017) Nanda, B.; Pradhan, A. C.; Parida, K. M.Mesoporous nanocomposites of CuO/ZrO2–MCM-41 (CuO@ZM-41) was designed by incorporating mesoporous ZrO2 (Z) into the high surface area MCM-41 (M-41) framework followed by loading CuO by wetness impregnation method keeping Si/Zr ratio 10. The nanocomposites were studied under PXRD, N2 sorption, DRS spectra, FTIR, XPS, NMR, HRTEM and PL to evaluate structural, morphological, optical properties and also the mesoporosity nature of the samples. The photo-reduction of Cr6+ was performed over CuO@ZM-41 by varying pH, substrate concentration, and irradiation time and catalyst dose. Among all the catalysts, 2 CuO@ZM-41 was found to be efficient photocatalyst for the photo-reduction of Cr6+. Nearly 100% reduction of Cr6+ has been achieved by 2 CuO@ZM-41 within 30 min. Intra-particle mesoporosity, high surface area, presence of CuO nanorods and electron transfer properties are the key factors for enhancing the photo-reduction activity of 2CuO@ZM-41.Item Open Access Facile Synthesis of Three-Dimensional Pt-TiO2Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane(Wiley, 2016) Khalily, M. A.; Eren, H.; Akbayrak, S.; Susapto, H. H.; Bıyıklı, Necmi; Özkar, S.; Güler, Mustafa O.Three‐dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self‐assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt‐TiO2 nano‐network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom‐level thickness precision. The 3D peptide‐TiO2 nano‐network was further decorated with highly monodisperse Pt nanoparticles by using ozone‐assisted ALD. The 3D TiO2 nano‐network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia–borane, generating three equivalents of H2.Item Open Access Glucose sensors based on electrospun nanofibers: a review(Springer Verlag, 2016) Senthamizhan, A.; Balusamy, B.; Uyar, TamerThe worldwide increase in the number of people suffering from diabetes has been the driving force for the development of glucose sensors. The recent past has devised various approaches to formulate glucose sensors using various nanostructure materials. This review presents a combined survey of these various approaches, with emphasis on the current progress in the use of electrospun nanofibers and their composites. Outstanding characteristics of electrospun nanofibers, including high surface area, porosity, flexibility, cost effectiveness, and portable nature, make them a good choice for sensor applications. Particularly, their nature of possessing a high surface area makes them the right fit for large immobilization sites, resulting in increased interaction with analytes. Thus, these electrospun nanofiber-based glucose sensors present a number of advantages, including increased life time, which is greatly needed for practical applications. Taking all these facts into consideration, we have highlighted the latest significant developments in the field of glucose sensors across diverse approaches.Item Open Access Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures(2011) Acar H.; Garifullin, R.; Güler, Mustafa O.Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic materials exploit the biomineralization process to form functional organic-inorganic hybrid nanostructures. In this work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD, FT-IR, UV-vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials developed in this work have vast potential in the fields of catalysis and electronic materials. © 2011 American Chemical Society.