Browsing by Subject "High resolution image"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Detection of compound structures using multiple hierarchical segmentations(IEEE, 2014) Akçay, Hüseyin Gökhan; Aksoy, SelimIn this paper, we present a method for automatic compound structure detection in high-resolution images. Given a query compound structure, our aim is to detect coherent regions with similar spatial arrangement and characteristics in multiple hierarchical segmentations. A Markov random field is constructed by representing query regions as variables and connecting the vertices that are spatially close by edges. Then, a maximum entropy distribution is assumed over the query region process and selection of similar region processes among a set of region hierarchies is achieved by maximizing the query model. Experiments using WorldView-2 images show the efficiency of probabilistic modeling of compound structures. © 2014 IEEE.Item Open Access SAR image reconstruction by expectation maximization based matching pursuit(Academic Press, 2015) Ugur, S.; Arıkan, Orhan; Gürbüz, A. C.Synthetic Aperture Radar (SAR) provides high resolution images of terrain and target reflectivity. SAR systems are indispensable in many remote sensing applications. Phase errors due to uncompensated platform motion degrade resolution in reconstructed images. A multitude of autofocusing techniques has been proposed to estimate and correct phase errors in SAR images. Some autofocus techniques work as a post-processor on reconstructed images and some are integrated into the image reconstruction algorithms. Compressed Sensing (CS), as a relatively new theory, can be applied to sparse SAR image reconstruction especially in detection of strong targets. Autofocus can also be integrated into CS based SAR image reconstruction techniques. However, due to their high computational complexity, CS based techniques are not commonly used in practice. To improve efficiency of image reconstruction we propose a novel CS based SAR imaging technique which utilizes recently proposed Expectation Maximization based Matching Pursuit (EMMP) algorithm. EMMP algorithm is greedy and computationally less complex enabling fast SAR image reconstructions. The proposed EMMP based SAR image reconstruction technique also performs autofocus and image reconstruction simultaneously. Based on a variety of metrics, performance of the proposed EMMP based SAR image reconstruction technique is investigated. The obtained results show that the proposed technique provides high resolution images of sparse target scenes while performing highly accurate motion compensation.Item Open Access Sparse ground-penetrating radar imaging method for off-the-grid target problem(SPIE, 2013) Gurbuz, A. C.; Teke, O.; Arıkan, OrhanSpatial sparsity of the target space in subsurface or through-the-wall imaging applications has been successfully used within the compressive-sensing framework to decrease the data acquisition load in practical systems, while also generating highresolution images. The developed techniques in this area mainly discretize the continuous target space into grid points and generate a dictionary of model data that is used in image-reconstructing optimization problems. However, for targets that do not coincide with the computation grid, imaging performance degrades considerably. This phenomenon is known as the off-grid problem. This paper presents a novel sparse ground-penetrating radar imaging method that is robust for off-grid targets. The proposed technique is an iterative orthogonal matching pursuit-based method that uses gradientbased steepest ascent-type iterations to locate the off-grid target. Simulations show that robust results with much smaller reconstruction errors are obtained for multiple off-grid targets compared to standard sparse reconstruction techniques. © 2013 SPIE and IS&T.Item Open Access Super-resolution using multiple quantized images(IEEE, 2010) Özçelikkale, Ayça; Akar, G. B.; Özaktas, Haldun M.In this paper, we study the effect of limited amplitude resolution (pixel depth) in super-resolution problem. The problem we address differs from the standard super-resolution problem in that amplitude resolution is considered as important as spatial resolution. We study the trade-off between the pixel depth and spatial resolution of low resolution (LR) images in order to obtain the best visual quality in the reconstructed high resolution (HR) image. The proposed framework reveals great flexibility in terms of pixel depth and number of LR images in super-resolution problem, and demonstrates that it is possible to obtain target visual qualities with different measurement scenarios including images with different amplitude and spatial resolutions.