Browsing by Subject "High resistance"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Milling force modelling of multidirectional carbon fiber reinforced polymer laminates(Elsevier, 2012) Karpat, Yiğit; Bahtiyar, O.; Deger, B.Carbon fiber reinforced polymer (CFRP) usage in the aerospace industry has been steadily increasing due to its superior material properties such as high strength, low weight, high resistance to corrosion, and a low thermal expansion coefficient. In addition, CFRP parts are produced near-net-shape, a process that eliminates rough machining operations. However, machining operations such as drilling, side milling, and slotting are still necessary to give the CFRP parts their final shape. A majority of the studies on machining of CFRP laminates are on drilling. The number of studies on milling of CFRPs is quite limited. In this study, a mechanistic cutting force model for milling CFRPs is proposed based on experimentally collected cutting force data during slot milling of unidirectional CFRP laminates using a polycrystalline diamond cutter. Cutting force coefficients in radial and tangential directions are calculated as a function of fiber cutting angle. The mechanistic model is shown to be capable of predicting cutting forces during milling of multidirectional CFRP laminates and capable of investigating stability of machining. © 2012 The Authors.Item Open Access Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode(IOP Publishing, 2011-01-11) Kyaw, A. K. K.; Sun, X. W.; Zhao, J. L.; Wang, J. X.; Zhao, D. W.; Wei, X. F.; Liu, X. W.; Demir, Hilmi Volkan; Wu, T.We report on top-illuminated, fluorine tin oxide/indium tin oxide-free (FTO/ITO-free), dye-sensitized solar cells (DSCs) using room-temperature- processed ZnO layers on metal substrates as the working electrodes and Pt-coated Ga-doped ZnO layers (GZO) as the counter electrodes. These top-illuminated DSCs with GZO render comparable efficiency to those employing commercial FTO counter electrodes. Despite a lower current density, the top-illuminated DSCs result in a higher fill factor than conventional DSCs due to a low ohmic loss at the electrode/semiconductor interface. The effect of metal substrate on the performance of the resulting top-illuminated DSCs is also studied by employing various metals with different work functions. Ti is shown to be a suitable metal to be used as the working electrode in the top-illuminated device architecture owing to its low ohmic loss at the electrode/semiconductor interface, minimum catalytic activity on redox reactions and high resistance to corrosion by liquid electrolytes.