Browsing by Subject "High luminous efficacy"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Superior warm-White light-emitting diodes integrated with quantum dot nanophosphors for high luminous efficacy and color rendering(Optical Society of America, 2011) Nizamoğlu, Sedat; Erdem, Talha; Sun, X. W.; Demir, Hilmi VolkanQuantum dot nanophoshor hybridized warm-white LEDs are reported to exhibit high photometric performance of luminous efficacy exceeding 350 lm/Wopt and color rendering index close to 90 at correlated color temperatures <3000 K. ©2011 Optical Society of America.Item Open Access Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering(2010) Nizamoglu, S.; Erdem, T.; Sun X.W.; Demir, Hilmi VolkanWarm-white LEDs (WLEDs) with high spectral quality and efficiency are required for lighting applications, but current experimental performances are limited. We report on nanocrystal quantum dot (NQD) hybridized WLEDs with high performance that exhibit a high luminous efficacy of optical radiation exceeding 350 lm/Wopt and a high color rendering index close to 90 at a low correlated color temperature <3000 K. These spectrally engineered WLEDs are obtained using a combination of CdSe/ZnS core/shell NQD nanophosphors integrated on blue InGaN/GaN LEDs. © 2010 Optical Society of America.Item Open Access Warm-White light-Emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering: Reply to comment(2011) Nizamoglu, S.; Erdem, T.; Sun X.W.; Demir, Hilmi VolkanThe correlated color temperatures and the corresponding color rendering indices calculated using actual experimental data (and not any prediction) in the original Letter [Opt. Lett. 35, 3372 (2010)] are correct. In addition, here the color rendering of our white LEDs integrated with nanocrystal quantum dots (NQDs) is provided for all test samples. Also, a new NQD-LED design with both high luminous efficacy of optical radiation and CRI is presented to have a chromaticity point in the quadrangle stated in the comment Letter [Opt. Lett. 36, 2851 (2011)]. The points made in the original Letter and all the calculation results provided therein are valid. © 2011 Optical Society of America.