Browsing by Subject "Heterojunction bipolar transistors"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A hole modulator for InGaN/GaN light-emitting diodes(American Institute of Physics, 2015) Zhang, Z-H.; Kyaw, Z.; Liu W.; Ji Y.; Wang, L.; Tan S.T.; Sun, X. W.; Demir, Hilmi VolkanThe low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332meV to ∼294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.Item Open Access Lumped element modeling of CMUT arrays in collapsed mode(IEEE, 2014-09) Aydoğdu, Elif; Özgürlük, A.; Atalar, Abdullah; Köymen, HayrettinThis study focuses on modeling collapsed modeoperation of CMUT arrays, and obtaining a small signal lumped element model for collapsed mode operation. Having the large signal model for single CMUT from previous studies, the mutual radiation impedance is presented for the collapsed mode, and a large signal model for a CMUT array is obtained for simulating the operation in both uncollapsed and collapsed modes. For faster computation, a small signal model for a CMUT cell is derived by linearizing the collapsed mode operation at a given bias point, and the computation time is reduced significantly. Using this model we are able to simulate a large array of collapsed CMUT cells. © 2014 IEEE.Item Open Access Resonances and nonuniformities in CMUT elements or arrays(IEEE, 2014-09) Atalar, Abdullah; Köymen, HayrettinWe determine the response of individual cells of a CMUT array immersed in water using the small-signal equivalent circuit of a single cell and radiation impedances. Using a numerically efficient technique, we are able to simulate large arrays. The results indicate the presence of resonances at low frequencies where Rayleigh-Bloch waves are excited on the surface of the array. Reflections from the edges cause standing-wave patterns. Above the cut-off frequency of Rayleigh-Bloch waves, no standing-wave pattern exists. However, there is nonuniformity among cell velocities mainly due to unequal radiation impedance seen by the cells. Rayleigh-Bloch waves and nonuniformity in cell velocities do not cause a significant degradation in the point spread function, but the oscillations extend the duration of impulse response, limiting the dynamic range. © 2014 IEEE.