Browsing by Subject "Heterogeneous platforms"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Adapting iterative-improvement heuristics for scheduling file-sharing tasks on heterogeneous platforms(Springer, Berlin, Heidelberg, 2008) Kaya, Kamer; Uçar, B.; Aykanat, Cevdet; Xhafa, F.; Abraham, A.We consider the problem of scheduling an application on a computing system consisting of heterogeneous processors and one or more file repositories. The application consists of a large number of file-sharing, otherwise independent tasks. The files initially reside on the repositories. The interconnection network is heterogeneous. We focus on two disjoint problem cases. In the first case, there is only one file repository which is called as the master processor. In the second case, there are two or more repositories, each holding a distinct set of files. The problem is to assign the tasks to the processors, to schedule the file transfers from the repositories, and to order the executions of tasks on each processor in such a way that the turnaround time is minimized. This chapter surveys several solution techniques; but the stress is on our two recent works [22,23]. At the first glance, iterative-improvement-based heuristics do not seem to be suitable for the aforementioned scheduling problems. This is because their immediate application suggests iteratively improving a complete schedule, and hence building and exploring a complex neighborhood around the current schedule. Such complex neighborhood structures usually render the heuristics time-consuming and make them stuck to a part of the search space. However, in both of the our recent works, we show that these issues can be solved by using a three-phase approach: initial task assignment, refinement, and execution ordering. The main thrust of these two works is that iterative-improve-based heuristics can efficiently deliver effective solutions, implying that iterative-improve-based heuristics can provide highly competitive solutions to the similar scheduling problems.Item Open Access Effective kernel mapping for OpenCL applications in heterogeneous platforms(Institute of Electrical and Electronics Engineers, 2012-09) Albayrak, Ömer Erdil; Aktürk, İsmail; Öztürk, ÖzcanMany core accelerators are being deployed in many systems to improve the processing capabilities. In such systems, application mapping need to be enhanced to maximize the utilization of the underlying architecture. Especially in GPUs mapping becomes critical for multi-kernel applications as kernels may exhibit different characteristics. While some of the kernels run faster on GPU, others may refer to stay in CPU due to the high data transfer overhead. Thus, heterogeneous execution may yield to improved performance compared to executing the application only on CPU or only on GPU. In this paper, we propose a novel profiling-based kernel mapping algorithm to assign each kernel of an application to the proper device to improve the overall performance of an application. We use profiling information of kernels on different devices and generate a map that identifies which kernel should run on where to improve the overall performance of an application. Initial experiments show that our approach can effectively map kernels on CPU and GPU, and outperforms to a CPU-only and GPU-only approach. © 2012 IEEE.