BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Heterogeneous computing."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Activity management algorithm for improving energy efficiency of small cell base stations in 5G heterogeneous networks
    (2014) Aykın, Irmak
    Heterogeneous networks (HetNets) are proposed in order to meet the increasing demand for next generation cellular wireless networks, but they also increase the energy consumption of the base stations. In this thesis, an activity management algorithm for improving the energy efficiency of HetNets is proposed. A smart sleep strategy is employed for the operator deployed pico base stations to enter sleep and active modes. According to that strategy, when the number of users exceeds the turn on threshold, the pico node becomes active and when the number of users drop below the turn off threshold, it goes into sleep mode. Mobile users dynamically enter and leave the cells, triggering the activation and deactivation of pico base stations. The performance of the system is examined for three different cellular network architectures: cell on edge (COE), uniformly distributed cells (UDC) and macro cell only network (MoNet). Two different user distributions are considered: uniform and hotspot. The effects of number of hotspot users and sleep energies of pico nodes on the energy efficiency are also investigated. The proposed activity management algorithm increases the energy efficiency, measured in bits/J, by 20%. The average bit rates achieved by HetNet users increase by 29% compared with the MoNet architecture. Thus, the proposed activity control algorithm increases the spectral efficiency of the network while consuming the energy more efficiently.
  • No Thumbnail Available
    ItemOpen Access
    Improving application behavior on heterogeneous manycore systems through kernel mapping
    (2013) Albayrak, Ömer Erdil
    Many-core accelerators are being more frequently deployed to improve the system processing capabilities. In such systems, application mapping must be enhanced to maximize utilization of the underlying architecture. Especially, in graphics processing units (GPUs), mapping kernels that are part of multi-kernel applications has a great impact on overall performance, since kernels may exhibit different characteristics on different CPUs and GPUs. While some kernels run faster on GPUs, others may perform better in CPUs. Thus, heterogeneous execution may yield better performance than executing the application only on a CPU or only on a GPU. In this thesis, we investigate on two approaches: a novel profiling-based adaptive kernel mapping algorithm to assign each kernel of an application to the proper device, and a Mixed Integer Programming (MIP) implementation to determine optimal mapping. We utilize profiling information for kernels on different devices and generate a map that identifies which kernel should run where in order to improve the overall performance or energy consumption of an application. Initial experiments show that our approach can efficiently map kernels on CPUs and GPUs, and outperforms CPU-only and GPU-only approaches. Some part of this work is published in 41st International Conference on Parallel Processing Workshops (ICPPW), 2012 [1], and submitted to Parallel Computing journal (ParCo) [2].
  • No Thumbnail Available
    ItemOpen Access
    Independent task assignment for heterogeneous systems
    (2013) Tabak, E Kartal
    We study the problem of assigning nonuniform tasks onto heterogeneous systems. We investigate two distinct problems in this context. The first problem is the one-dimensional partitioning of nonuniform workload arrays with optimal load balancing. The second problem is the assignment of nonuniform independent tasks onto heterogeneous systems. For one-dimensional partitioning of nonuniform workload arrays, we investigate two cases: chain-on-chain partitioning (CCP), where the order of the processors is specified, and chain partitioning (CP), where processor permutation is allowed. We present polynomial time algorithms to solve the CCP problem optimally, while we prove that the CP problem is NP complete. Our empirical studies show that our proposed exact algorithms for the CCP problem produce substantially better results than the state-of-the-art heuristics while the solution times remain comparable. For the independent task assignment problem, we investigate improving the performance of the well-known and widely used constructive heuristics MinMin, MaxMin and Sufferage. All three heuristics are known to run in O(KN2 ) time in assigning N tasks to K processors. In this thesis, we present our work on an algorithmic improvement that asymptotically decreases the running time complexity of MinMin to O(KN log N) without affecting its solution quality. Furthermore, we combine the newly proposed MinMin algorithm with MaxMin as well as Sufferage, obtaining two hybrid algorithms. The motivation behind the former hybrid algorithm is to address the drawback of MaxMin in solving problem instances with highly skewed cost distributions while also improving the running time performance of MaxMin. The latter hybrid algorithm improves the running time performance of Sufferage without degrading its solution quality. The proposed algorithms are easy to implement and we illustrate them through detailed pseudocodes. The experimental results over a large number of real-life datasets show that the proposed fast MinMin algorithm and the proposed hybrid algorithms perform significantly better than their traditional counterparts as well as more recent state-of-the-art assignment heuristics. For the large datasets used in the experiments, MinMin, MaxMin, and Sufferage, as well as recent state-of-the-art heuristics, require days, weeks, or even months to produce a solution, whereas all of the proposed algorithms produce solutions within only two or three minutes. For the independent task assignment problem, we also investigate adopting the multi-level framework which was successfully utilized in several applications including graph and hypergraph partitioning. For the coarsening phase of the multi-level framework, we present an efficient matching algorithm which runs in O(KN) time in most cases. For the uncoarsening phase, we present two refinement algorithms: an efficient O(KN)-time move-based refinement and an efficient O(K2N log N)-time swap-based refinement. Our results indicate that multi-level approach improves the quality of task assignments, while also improving the running time performance, especially for large datasets. As a realistic distributed application of the independent task assignment problem, we introduce the site-to-crawler assignment problem, where a large number of geographically distributed web servers are crawled by a multi-site distributed crawling system and the objective is to minimize the duration of the crawl. We show that this problem can be modeled as an independent task assignment problem. As a solution to the problem, we evaluate a large number of state-of-the-art task assignment heuristics selected from the literature as well as the improved versions and the newly developed multi-level task assignment algorithm. We compare the performance of different approaches through simulations on very large, real-life web datasets. Our results indicate that multi-site web crawling efficiency can be considerably improved using the independent task assignment approach, when compared to relatively easy-to-implement, yet naive baselines.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize