Browsing by Subject "Heteroepitaxy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access High performance n-MOSFETs with novel source/drain on selectively grown Ge on Si for monolithic integration(IEEE, 2009) Yu, H.-Y.; Kobayashi, M.; Jung, W. S.; Okyay, Ali Kemal; Nishi, Y.; Saraswat, K. C.We demonstrate high performance Ge n-MOSFETs with novel raised source/drain fabricated on high quality single crystal Ge selectively grown heteroepitaxially on Si using Multiple Hydrogen Anealing for Heteroepitaxy(MHAH) technique. Until now low source/drain series resistance in Ge n-MOSFETs has been a highly challenging problem. Source and drain are formed by implant-free, in-situ doping process for the purpose of very low series resistance and abrupt and shallow n+/p junctions. The novel n-MOSFETs show among the highest electron mobility reported on (100) Ge to-date. Furthermore, these devices provide an excellent Ion/Ioff ratio(4× 103) with very high Ion of 3.23μA/μm. These results show promise towards monolithic integration of Ge MOSFETs with Si CMOS VLSI platform.Item Open Access High quality single-crystal germanium-on-insulator on bulk Si substrates based on multistep lateral over-growth with hydrogen annealing(American Institute of Physics, 2010-08-09) Yu, H. Y.; Cheng, S. L.; Park, J. H.; Okyay, Ali Kemal; Onbal, M. C.; Ercan, B.; Nishi, Y.; Saraswat, K. C.Germanium-on-insulator (GOI) is desired for high performance metal-oxide-semiconductor transistors and monolithically integrated optoelectronics. We demonstrate a promising approach to achieve single-crystal defect-free GOI by using lateral over-growth through SiO2 window. The dislocations due to the lattice mismatch are effectively terminated and reduced in SiO2 trench by selective area heteroepitaxy combined with hydrogen annealing. Low defect density of 4× 106 cm-2 and low surface roughness of 0.7 nm (root-mean-square) on GOI are confirmed by plan-view transmission electron microscopy and atomic force microscopy analysis. In addition, the excellent metal-semiconductor-metal diode electrical characteristics fabricated on this GOI confirm Ge crystal quality. The selectively grown GOI structure can provide the monolithic integration of SiGe based devices on a Si very large scale integration (VLSI) platform