BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Heavy holes"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Anomalous spectral characteristics of ultrathin sub-nm colloidal CdSe nanoplatelets
    (Optical Society of America, 2017) Bose S.; Delikanlı, Savaş; Yeltik, Aydan; Sharma, Manoj; Erdem, Onur; Dang C.; Fan W.; Zhang D.H.; Demir, Hilmi Volkan
    We demonstrate high quantum yield broad photoluminescence emission of ultrathin sub-nanometer CdSe nanoplatelets (two-monolayer). They also exhibit polarization-characterized lateral size dependent anomalous heavy hole and light/split-off hole absorption intensities. © 2017 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Landau quantization of two-dimensional heavy holes, energy spectrum of magnetoexcitons and Auger-recombination lines
    (2013) Podlesny I.V.; Moskalenko, S.A.; Hakioǧlu, T.; Kiselyov, A.A.; Gherciu L.
    The Landau quantization of the two-dimensional (2D) heavy holes, its influence on the energy spectrum of 2D magnetoexcitons, as well as their optical orientation are studied. The Hamiltonian of the heavy holes is written in two-band model taking into account the Rashba spin-orbit coupling (RSOC) with two spin projections, but with nonparabolic dispersion law and third-order chirality terms. The most Landau levels, except three with m=0,1,2, are characterized by two quantum numbers m-3 and m for m≥3 for two spin projections correspondingly. The difference between them is determined by the third-order chirality. Four lowest Landau levels (LLLs) for heavy holes were combined with two LLLs for conduction electron, which were taken the same as they were deduced by Rashba in his theory of spin-orbit coupling (SOC) based on the initial parabolic dispersion law and first-order chirality terms. As a result of these combinations eight 2D magnetoexciton states were formed. Their energy spectrum and the selection rules for the quantum transitions from the ground state of the crystal to exciton states were determined. On this base such optical orientation effects as spin polarization and magnetoexciton alignment are discussed. The continuous transformation of the shake-up (SU) into the shake-down (SD) recombination lines is explained on the base of nonmonotonous dependence of the heavy hole Landau quantization levels as a function of applied magnetic field. © 2013 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optical properties of the two-dimensional magnetoexcitons under the influence of the Rashba spin-orbit coupling
    (SPIE, 2011) Hakioglu, Tuğrul; Liberman, M.A.; Moskalenko, S.A.; Podlesny I.V.
    The influence of the Rashba spin-orbit coupling on the two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field leads to different results of the Landau quantization in different spin projections. In Landau gauge the unidimensional wave vector describing the free motion in one in-plane direction is the same for both spin projections, whereas the numbers of the Landau quantization levels are different. For electron in s-type conduction band they differ by one, as was established earlier by Rashba1, whereas for heavy holes in p-type valence band influenced by the 2D symmetry of the layer they differ by three. There are two lowest spin-splitted Landau levels for electrons as well as two lowest for holes. They give rise to four lowest energy levels of the 2D magnetoexcitons. It is shown that two of them are dipole-active in band-to-band quantum transitions, one is quadrupole-active and the fourth is forbidden. The optical orientation under the influence of the circularly polarized light leads to optical alignment of the magnetoexcitons with different orbital momentum projections on the direction of the external magnetic field. © 2011 SPIE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback