Browsing by Subject "HRMAS-NMR spectroscopy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access An integrated genomic and metabolomic approach for defining survival time in adult oligodendrogliomas patients(Springer, 2019) Bund, C.; Guergova‑Kuras, M.; Çiçek, A. Ercüment; Moussallieh, F.-M.; Dali‑Youcef, N.; Piotto, M.; Schneider, P.; Heller, R.; Entz‑Werle, N.; Lhermitte, B.; Chenard, M.-P.; Schott, R.; Proust, F.; Noel, G.; Namer, I. J.Introduction The identification of frequent acquired mutations shows that patients with oligodendrogliomas have divergent biology with differing prognoses regardless of histological classification. A better understanding of molecular features as well as their metabolic pathways is essential. Objectives The aim of this study was to examine the relationship between the tumor metabolome, six genomic aberrations (isocitrate dehydrogenase1 [IDH1] mutation, 1p/19q codeletion, tumor protein p53 [TP53] mutation, O6-methylguanin-DNA methyltransferase [MGMT] promoter methylation, epidermal growth factor receptor [EGFR] amplification, phosphate and tensin homolog [PTEN] methylation), and the patients’ survival time. Methods We applied 1H high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy to 72 resected oligodendrogliomas. Results The presence of IDH1, TP53, 1p19q codeletion, MGMT promoter methylation reduced the relative risk of death, whereas PTEN methylation and EGFR amplification were associated with poor prognosis. Increased concentration of 2-hydroxyglutarate (2HG), N-acetyl-aspartate (NAA), myo-inositol and the glycerophosphocholine/phosphocholine (GPC/ PC) ratio were good prognostic factors. Increasing the concentration of serine, glycine, glutamate and alanine led to an increased relative risk of death. Conclusion HRMAS NMR spectroscopy provides accurate information on the metabolomics of oligodendrogliomas, making it possible to find new biomarkers indicative of survival. It enables rapid characterization of intact tissue and could be used as an intraoperative method.Item Open Access What does reduced FDG uptake mean in high-grade gliomas?(NLM (Medline), 2019) Bund, C.; Lhermitte, B.; Çiçek, A. Ercüment; Ruhland, E.; Proust, F.; Namer, I. J.Purpose: As well as in many others cancers, FDG uptake is correlated with the degree of malignancy in gliomas, that is, commonly high FDG uptake in high-grade gliomas. However, in clinical practice, it is not uncommon to observe high-grade gliomas with low FDG uptake. Our aim was to explore the tumor metabolism in 2 populations of high-grade gliomas presenting high or low FDG uptake. Methods: High-resolution magic-angle spinning nuclear magnetic resonance spectroscopy was realized on tissue samples from 7 high-grade glioma patients with high FDG uptake and 5 high-grade glioma patients with low FDG uptake. Tumor metabolomics was evaluated from 42 quantified metabolites and compared by network analysis. Results: Whether originating from astrocytes or oligodendrocytes, the highgrade gliomas with low FDG avidity represent a subgroup of high-grade gliomas presenting common characteristics: low aspartate, glutamate, and creatine levels, which are probably related to the impaired electron transport chain in mitochondria; high serine/glycine metabolism and so one-carbon metabolism; low glycerophosphocholine-phosphocholine ratio in membrane metabolism, which is associated with tumor aggressiveness; and finally negative MGMT methylation status. Conclusions: It seems imperative to identify this subgroup of high-grade gliomas with low FDG avidity, which is especially aggressive. Their identification could be important for early detection for a possible personalized treatment, such as antifolate treatment.