Browsing by Subject "Graphics processing units"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Emerging accelerator platforms for data centers(IEEE, 2017-12-04) Özdal, Muhammet MustafaCPU and GPU platforms may not be the best options for many emerging compute patterns, which led to a new breed of emerging accelerator platforms. This article gives a comprehensive overview with a focus on commercial platforms.Item Open Access Energy efficient architecture for graph analytics accelerators(IEEE, 2016-06) Özdal, Muhammet Mustafa; Yeşil, Şerif; Kim, T.; Ayupov, A.; Greth, J.; Burns, S.; Öztürk, ÖzcanSpecialized hardware accelerators can significantly improve the performance and power efficiency of compute systems. In this paper, we focus on hardware accelerators for graph analytics applications and propose a configurable architecture template that is specifically optimized for iterative vertex-centric graph applications with irregular access patterns and asymmetric convergence. The proposed architecture addresses the limitations of the existing multi-core CPU and GPU architectures for these types of applications. The SystemC-based template we provide can be customized easily for different vertex-centric applications by inserting application-level data structures and functions. After that, a cycle-accurate simulator and RTL can be generated to model the target hardware accelerators. In our experiments, we study several graph-parallel applications, and show that the hardware accelerators generated by our template can outperform a 24 core high end server CPU system by up to 3x in terms of performance. We also estimate the area requirement and power consumption of these hardware accelerators through physical-aware logic synthesis, and show up to 65x better power consumption with significantly smaller area. © 2016 IEEE.Item Open Access Improving application behavior on heterogeneous manycore systems through kernel mapping(2013) Albayrak, O. E.; Akturk, I.; Ozturk, O.Many-core accelerators are being more frequently deployed to improve the system processing capabilities. In such systems, application mapping must be enhanced to maximize utilization of the underlying architecture. Especially, in graphics processing units (GPUs), mapping kernels that are part of multi-kernel applications has a great impact on overall performance, since kernels may exhibit different characteristics on different CPUs and GPUs. While some kernels run faster on GPUs, others may perform better in CPUs. Thus, heterogeneous execution may yield better performance than executing the application only on a CPU or only on a GPU. In this paper, we investigate on two approaches: a novel profiling-based adaptive kernel mapping algorithm to assign each kernel of an application to the proper device, and a Mixed-Integer Programming (MIP) implementation to determine optimal mapping. We utilize profiling information for kernels on different devices and generate a map that identifies which kernel should run where in order to improve the overall performance of an application. Initial experiments show that our approach can efficiently map kernels on CPUs and GPUs, and outperforms CPU-only and GPU-only approaches. © 2013 Elsevier B.V. All rights reserved.