Browsing by Subject "Graphene devices"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene(Elsevier Ltd, 2016) Ozdemir, O.; Aygar, A. M.; Balci, O.; Kocabas, C.; Caglayan, H.; Özbay, EkmelGraphene is a strong candidate for active optoelectronic devices because of its electrostatically tunable optical response. Current substrate back-gating methods are unable to sustain high fields through graphene unless a high gate voltage is applied. In order to solve this problem, ionic liquid gating is used which allows substrate front side gating, thus eliminating the major loss factors such as a dielectric layer and a thick substrate layer. On the other hand, due to its two dimensional nature, graphene interacts weakly with light and this interaction limits its efficiency in optoelectronic devices. However, V-shaped plasmonic antennas can be used to enhance the incident electric field intensity and confine the electric field near graphene thus allowing further interaction with graphene. Combining V-shaped nanoantennas with the tunable response of graphene, the operation wavelength of the devices that utilize V-shaped antennas can be tuned in situ. In the present paper, we demonstrate a graphene-based device with ionic liquid gating and V- shaped plasmonic antennas to both enhance and more effectively tune the total optical response. We are able to tune the transmission response of the device for up to 389 nm by changing the gate voltage by 3.8 V in the mid-infrared regime.Item Open Access Graphene-enabled optoelectronics on paper(American Chemical Society, 2016-06) Polat, E. O.; Uzlu, H. B.; Balci, O.; Kakenov, N.; Kovalska, E.; Kocabas, C.The realization of optoelectronic devices on paper has been an outstanding challenge due to the large surface roughness and incompatible nature of paper with optical materials. Here, we demonstrate a new class of optoelectronic devices on a piece of printing paper using graphene as an electrically reconfigurable optical medium. Our approach relies on electro-modulation of optical properties of multilayer graphene on paper via blocking the interband electronic transitions. The paper based devices yield high optical contrast in the visible spectrum with a fast response. Pattering graphene into multiple pixels, folding paper into three-dimensional shapes or printing colored ink on paper substrates enable us to demonstrate novel optoelectronic devices which cannot be realized with wafer-based techniques.Item Open Access X-ray photoelectron spectroscopy for identification of morphological defects and disorders in graphene devices(AIP Publishing, 2016) Aydogan, P.; Polat, E. O.; Kocabas, C.; Süzer, ŞefikThe progress in the development of graphene devices is promising, and they are now considered as an option for the current Si-based electronics. However, the structural defects in graphene may strongly influence the local electronic and mechanical characteristics. Although there are well-established analytical characterization methods to analyze the chemical and physical parameters of this material, they remain incapable of fully understanding of the morphological disorders. In this study, x-ray photoelectron spectroscopy (XPS) with an external voltage bias across the sample is used for the characterization of morphological defects in large area of a few layers graphene in a chemically specific fashion. For the XPS measurements, an external +6 V bias applied between the two electrodes and areal analysis for three different elements, C1s, O1s, and Au4f, were performed. By monitoring the variations of the binding energy, the authors extract the voltage variations in the graphene layer which reveal information about the structural defects, cracks, impurities, and oxidation levels in graphene layer which are created purposely or not. Raman spectroscopy was also utilized to confirm some of the findings. This methodology the authors offer is simple but provides promising chemically specific electrical and morphological information.