BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Graph partitioning by vertex separators"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An effective model to decompose linear programs for parallel solution
    (Springer, 1996-08) Pınar, Ali; Aykanat, Cevdet
    Although inherent parallelism in the solution of block angulax Linear Programming (LP) problems has been exploited in many research works, the literature that addresses decomposing constraint matrices into block angular form for parallel solution is very rare and recent. We have previously proposed hypergraph models, which reduced the problem to the hypergraph partitioning problem. However, the quality of the results reported were limited due to the hypergraph partitioning tools we have used. Very recently, multilevel graph partitioning heuristics have been proposed leading to very successful graph partitioning tools; Chaco and Metis. In this paper, we propose an effective graph model to decompose matrices into block angular form, which reduces the problem to the well-known graph partitioning by vertex separator problem. We have experimented the validity of our proposed model with various LP problems selected from NETLIB and other sources. The results are very attractive both in terms of solution quality and running times. © Springer-Verlag Berlin Heidelberg 1996.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Permuting sparse rectangular matrices into block-diagonal form
    (SIAM, 2004) Aykanat, Cevdet; Pınar, A.; Çatalyürek Ü. V.
    We investigate the problem of permuting a sparse rectangular matrix into block-diagonal form. Block-diagonal form of a matrix grants an inherent parallelism for solving the deriving problem, as recently investigated in the context of mathematical programming, LU factorization, and QR factorization. To represent the nonzero structure of a matrix, we propose bipartite graph and hypergraph models that reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Our experiments on a wide range of matrices, using the state-of-the-art graph and hypergraph partitioning tools MeTiS and PaToH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and runtime.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback