Browsing by Subject "Graph convolutional networks"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Multitask learning of gene risk for autism spectrum disorder and intellectual disability(2020-10) Beyreli, İlaydaAutism Spectrum Disorder (ASD) and Intellectual Disability (ID) are comorbid neurodevelopmental disorders with complex genetic architectures. Despite largescale sequencing studies only a fraction of the risk genes were identified for both. Here, we present a novel network-based gene risk prioritization algorithm named DeepND that performs cross-disorder analysis to improve prediction power by exploiting the comorbidity of ASD and ID via multitask learning. Our model leverages information from gene co-expression networks that model human brain development using graph convolutional neural networks and learns which spatiotemporal neurodevelopmental windows are important for disorder etiologies. We show that our approach substantially improves the state-of-the-art prediction power. We observe that both disorders are enriched in transcription regulators. Despite tight regulatory links in between ASD risk genes, such is lacking across ASD and ID risk genes or within ID risk genes. Finally, we investigate frequent ASD and ID associated copy number variation regions and confident false findings to suggest several novel susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders.Item Open Access Predicting informative spatio-temporal neurodevelopmental windows and gene risk for autism spectrum disorder(2020-10) Karakahya, OğuzhanAutism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic basis. Due to its intricate nature, only a fraction of the risk genes were identified despite the effort spent on large-scale sequencing studies. To perceive underlying mechanisms of ASD and predict new risk genes, a deep learning architecture is designed which processes mutational burden of genes and gene co-expression networks using graph convolutional networks. In addition, a mixture of experts model is employed to detect specific neurodevelopmental periods that are of particular importance for the etiology of the disorder. This end-to-end trainable model produces a posterior ASD risk probability for each gene and learns the importance of each network for this prediction. The results of our approach show that the ASD gene risk prediction power is improved compared to the state-of-the-art models. We identify mediodorsal nucleus of thalamus and cerebellum brain region and neonatal & early infancy to middle & late childhood period (0 month - 12 years) as the most informative neurodevelopmental window for prediction. Top predicted risk genes are found to be highly enriched in ASDassociated pathways and transcription factor targets. We pinpoint several new candidate risk genes in CNV regions associated with ASD. We also investigate confident false-positives and false negatives of the method and point to studies which support the predictions of our method.