Browsing by Subject "Gradient coil"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A simple analytical expression for the gradient induced potential on active implants during MRI(2012) Turk, E.A.; Kopanoglu, E.; Guney, S.; Bugdayci, K.E.; Ider, Y. Z.; Erturk, V. B.; Atalar, ErginDuring magnetic resonance imaging, there is an interaction between the time-varying magnetic fields and the active implantable medical devices (AIMD). In this study, in order to express the nature of this interaction, simplified analytical expressions for the electric fields induced by time-varying magnetic fields are derived inside a homogeneous cylindrical volume. With these analytical expressions, the gradient induced potential on the electrodes of the AIMD can be approximately calculated if the position of the lead inside the body is known. By utilizing the fact that gradient coils produce linear magnetic field in a volume of interest, the simplified closed form electric field expressions are defined. Using these simplified expressions, the induced potential on an implant electrode has been computed approximately for various lead positions on a cylindrical phantom and verified by comparing with the measured potentials for these sample conditions. In addition, the validity of the method was tested with isolated frog leg stimulation experiments. As a result, these simplified expressions may help in assessing the gradient-induced stimulation risk to the patients with implants.Item Open Access A z-gradient array coil with a dedicated active-shielded array coil for MRI(John Wiley and Sons Inc., 2022-08-02) Takrimi, Manouchehr; Atalar, ErginPurpose: An array-based z-gradient coil with a set of programmable power amplifiers can outperform a conventional z-gradient coil and make it highly customizable with a broader range of tunable features. Methods: A dynamically adjustable imaging volume can be achieved using a pair of independent arrays and a modified optimization procedure based on analytic equations. Two modes of operation are provided: (a) standard mode that resembles a conventional coil; (b) advanced mode, where all performance parameters can be adjusted employing a controllable feeding mechanism. Commercial software is used to demonstrate the validity and feasibility of the proposed coil. Results: Primary and shield array diameters are 24 and 30 cm, both of which comprise 12 bundles of 10 turns copper wires. Maximum feeding voltage/current is 250 V/100 A for all array elements. Four distinct magnetic profiles are provided: (a) conventional profile with 140 mm diameter spherical region of interest, 120 mT/m gradient, and up to 4500 T/m/s slew rate; (b) profile of 200 mT/m, 70 mm region of interest, and up to 6900 T/m/s slew rate; (c) 60 mm axially shifted 70 mm region of interest with 120 mT/m strength and 3600 T/m/s slew rate; and (d) profile of 370 mT/m, 120 mm region of interest, and 3700 T/m/s slew rate when the active shield is reverse fed. Conclusion: By using an active-shielded gradient array coil, the magnetic field profile of the imaging volume can be adjusted dynamically, and it can provide new features and a wide range of field profiles for diverse applications in MRI.