Browsing by Subject "Gold and silver nanoparticles"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles(OSA - The Optical Society, 2016) Dereshgi, S. A.; Okyay, Ali KemalPlasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case.Item Open Access Optical response of Ag-Au bimetallic nanoparticles to electron storage in aqueous medium(2008) Tunc, I.; Guvenc, H. O.; Sezen, H.; Süzer, Şefik; Correa-Duarte, M. A.; Liz-Marzán, L. M.Composition and structure dependence of the shift in the position of the surface plasmon resonance band upon introduction of NaBH 4 to aqueous solutions of gold and silver nanoparticles are presented. Silver and gold nanoalloys in different compositions were prepared by co-reduction of the corresponding salt mixtures using sodium citrate as the reducing agent. After addition of NaBH 4 to the resultant nanoalloys, the maximum of their surface plasmon resonance band, ranging between that of pure silver (ca. 400 nm) and of pure gold (ca. 530 nm), is blue-shifted as a result of electron storage on the particles. The extent of this blue shift increases non-linearly with the mole fraction of silver in the nanoparticle, parallel to the trends reported previously for both the frequency and the extinction coefficient of the plasmon band shifts. Gold(core)@silver(shell) nanoparticles were prepared by sequential reduction of gold and silver, where addition of NaBH 4 results in relatively large spectral shift in the plasmon resonance band when compared with the nanoalloys having a similar overall composition. The origin of the large plasmon band shift in the core-shell is related with a higher silver surface concentration on these particles. Hence, the chemical nature of the nanoparticle emerges as the dominating factor contributing to the extent of the spectral shift as a result of electron storage in bimetallic systems. Copyright © 2008 American Scientific Publishers All rights reserved.