Browsing by Subject "Global optimization problems"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Levy walk evolution for global optimization(ACM, 2008-07) Urfalıoğlu, Onay; Çetin, A. Enis; Kuruoğlu, E. E.A novel evolutionary global optimization approach based on adaptive covariance estimation is proposed. The proposed method samples from a multivariate Levy Skew Alpha-Stable distribution with the estimated covariance matrix to realize a random walk and so to generate new solution candidates in the mutation step. The proposed method is compared to the popular Differential Evolution method, which is one of the best general evolutionary global optimizers available. Experimental results indicate that the proposed approach yields a general improvement in the required number of function evaluations to solve global optimization problems. Especially, as shown in experiments, the underlying heavy tailed alpha-stable distribution enables a considerably more effective global search in more complex problems. Track: Evolution Strategies.Item Open Access Positioning algorithms for cooperative networks in the presence of an unknown turn-around time(IEEE, 2011) Gholami, M.R.; Gezici, Sinan; Ström, E.G.; Rydström, M.This paper addresses the problem of single node positioning in cooperative network using hybrid two-way time-of-arrival and time-difference-of-arrival where, the turn-around time at the target node is unknown. Considering the turn-around time as a nuisance parameter, the derived maximum likelihood estimator (MLE) brings a difficult global optimization problem due to local minima in the cost function of the MLE. To avoid drawbacks in solving the MLE, we obtain a linear two-step estimator using non-linear pre-processing which is algebraic and closed-form in each step. To compare different methods, Cramér-Rao lower bound (CRLB) is derived. Simulation results confirm that the proposed linear estimator attains the CRLB for sufficiently high signal-to-noise ratios. © 2011 IEEE.Item Open Access Range based sensor node localization in the presence of unknown clock skews(IEEE, 2013) Gholami, M.R.; Gezici, Sinan; Strom, E.G.We deal with the positioning problem based on two-way time-of-arrival (TW-TOA) measurements in asynchronous wireless sensor networks. The optimal estimator for this problem poses a difficult global optimization problem. To avoid the drawbacks in solving the optimal estimator, we use approximations and derive linear models, which facilitate efficient solutions. In particular, we employ the least squares method and solve a general trust region subproblem to find a coarse estimate. To further refine the estimate, we linearize the measurements and obtain a linear model which can be solved using regularized least squares. Simulation results illustrate that the proposed approaches asymptotically attain the Cramér-Rao lower bound. © 2013 IEEE.