Browsing by Subject "Genome-wide association"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access DeepND: Deep multitask learning of gene risk for comorbid neurodevelopmental disorders(Cell Press, 2022-07-08) Beyreli, İlayda; Karakahya, Oğuzhan; Çiçek, A. ErcümentAutism spectrum disorder and intellectual disability are comorbid neurodevelopmental disorders with complex genetic architectures. Despite large-scale sequencing studies, only a fraction of the risk genes was identified for both. We present a network-based gene risk prioritization algorithm, DeepND, that performs cross-disorder analysis to improve prediction by exploiting the comorbidity of autism spectrum disorder (ASD) and intellectual disability (ID) via multitask learning. Our model leverages information from human brain gene co-expression networks using graph convolutional networks, learning which spatiotemporal neurodevelopmental windows are important for disorder etiologies and improving the state-of-the-art prediction in single- and cross-disorder settings. DeepND identifies the prefrontal and motor-somatosensory cortex (PFC-MFC) brain region and periods from early- to mid-fetal and from early childhood to young adulthood as the highest neurodevelopmental risk windows for ASD and ID. We investigate ASD- and ID-associated copy-number variation (CNV) regions and report our findings for several susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders. © 2022 The Author(s)Item Open Access The impact of psychosis genome-wide associated ZNF804A variation on verbal fluency connectivity(Elsevier, 2018) Tecelão, D.; Mendes, A.; Martins, D.; Bramon, E.; Toulopoulou, Timothea; Kravariti, E.; Murray, R.; Prata, D.Schizophrenia (SCZ) and bipolar disorder (BD) have high heritability. Genome-wide association studies (GWAS) have identified ZNF804A as a significant risk gene for both illnesses. A validation of this finding at the brain systems-level is imperative as there is still little understanding of how it heightens risk. Based in part on our recent findings of an effect on widespread decreased white matter microstructural fractional anisotropy (putatively a proxy of its integrity), particularly strong in SCZ, we asked whether the risk allele has a detrimental effect on regional brain activation and functional connectivity during a type of cognitive processing which is, together with its neural correlates, impaired in BD and SCZ: verbal fluency. Functional MRI and genotype data was collected from 80 healthy volunteers, and 54 SCZ and 40 BD patients. A standard multifactorial analysis of variance using statistical parametric mapping and significance correction of FWE p < 0.05 was used. We found the GWAS risk allele A was associated with decreased positive functional coupling between the left precentral gyrus/inferior frontal gyrus (i.e. the most highly recruited area for the task) and: 1) the left inferior frontal gyrus, and 2) the left posterior cingulate gyrus, encompassing the precuneus; both as a main effect across controls and psychosis patients. Such association of the risk allele with reduced functional connectivity (with no area where the opposite main effect was detected), converges with findings in other tasks, our previous finding of its widespread impact on brain white matter microstructure, and with the dysconnectivity hypothesis of SCZ.Item Open Access Schizophrenia polygenic risk score influence on white matter microstructure(Elsevier, 2020) Simões, B.; Vassos, E.; Shergill, S.; McDonald, C.; Toulopoulou, Timothea; Kalidindi, S.; Kane, F.; Murray, R.; Bramon, E.; Ferreira, H.; Prata, D.Schizophrenia (SZ) and bipolar disorder (BD) are highly heritable, share symptomatology, and have a polygenic architecture. The impact of recent polygenic risk scores (PRS) for psychosis, which combine multiple genome-wide associated risk variations, should be assessed on heritable brain phenotypes also previously associated with the illnesses, for a better understanding of the pathways to disease. We have recently reported on the current SZ PRS's ability to predict 1st episode of psychosis case-control status and general cognition. Herein, we test its penetrance on white matter microstructure, which is known to be impaired in SZ, in BD and their relatives, using 141 participants (including SZ, BP, relatives of SZ or BP patients, and healthy volunteers), and two white matter integrity indexes: fractional anisotropy (FA) and mean diffusivity (MD). No significant correlation between the SZ PRS and FA or MD was found, thus it remains unclear whether white matter changes are primarily associated with SZ genetic risk profiles.