Browsing by Subject "Generalized pencil-of-function methods"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Analysis of input impedance and mutual coupling of microstrip antennas on multilayered circular cylinders using closed-form green's function representations(Institute of Electrical and Electronics Engineers Inc., 2014) Karan, S.; Erturk, V. B.Closed-form Green's function (CFGF) representations for cylindrically stratified media are developed and used in conjunction with a Galerkin method of moments (MoM) in the space domain for the analysis of microstrip antennas on multilayered circular cylinders. An attachment mode is used in the MoM solution procedure to accurately model the feeding of probe-fed microstrip antennas. The developed CFGF representations are modified in the source region (where two current modes can partially or fully overlap with each other during the MoM procedure) so that singularities can be treated analytically and hence, the proposed CFGF representations can be safely used in this region. Furthermore, accurate CFGF representations for the probe-related components (necessary for probe type excitations including the attachment mode) are obtained when the radial distance between the source and field points is electrically small or zero. Numerical results in the form of input impedance of various microstrip antennas and the mutual coupling between two antennas are presented showing good agreement when compared to the available published results as well as the results obtained from CST Microwave Studio.Item Open Access Closed-form green's function representations for mutual coupling calculations between apertures on a perfect electric conductor circular cylinder covered with dielectric layers(IEEE, 2011-06-07) Akyüz, M. S.; Ertürk, V. B.; Kalfa, M.Closed-form Green's function (CFGF) representations are developed for tangential magnetic current sources to calculate the mutual coupling between apertures on perfectly conducting circular cylinders covered with dielectric layers. The new representations are obtained by first rewriting the corresponding spectral domain Green's function representations in a different form (so that accurate results for electrically large cylinders, and along the axial line of a cylinder can be obtained). Then, the summation over the cylindrical eigenmodes is calculated efficiently. Finally, the resulting expressions are transformed to the spatial domain using a modified two-level generalized pencil of function method. Numerical results are presented showing good agreement when compared to CST Microwave Studio results.