Browsing by Subject "Gene deletion"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci(Cell Press, 2015) Sanders, S. J.; He, X.; Willsey, A. J.; Ercan-Sencicek, A. G.; Samocha, K. E.; Cicek, A. E.; Murtha, M. T.; Bal, V. H.; Bishop, S. L.; Dong, S.; Goldberg, A. P.; Jinlu, C.; Keaney, J. F.; Keaney III, J. F.; Mandell, J. D.; Moreno-De-Luca, D.; Poultney, C. S.; Robinson, E. B.; Smith L.; Solli-Nowlan, T.; Su, M. Y.; Teran, N. A.; Walker, M. F.; Werling, D. M.; Beaudet, A. L.; Cantor, R. M.; Fombonne, E.; Geschwind, D. H.; Grice, D. E.; Lord, C.; Lowe, J. K.; Mane, S. M.; Martin, D.M.; Morrow, E. M.; Talkowski, M. E.; Sutcliffe, J. S.; Walsh, C. A.; Yu, T. W.; Ledbetter, D. H.; Martin, C. L.; Cook, E. H.; Buxbaum, J. D.; Daly, M. J.; Devlin, B.; Roeder, K.; State, M. W.Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1). Through analysis of de novo mutations in autism spectrum disorder (ASD), Sanders et al. find that small deletions, but not large deletions/duplications, contain one critical gene. Combining CNV and sequencing data, they identify 6 loci and 65 genes associated with ASD.Item Open Access Novel VLDLR microdeletion identified in two Turkish siblings with pachygyria and pontocerebellar atrophy(Springer, 2010) Kolb, L. E.; Arlier, Z.; Yalcinkaya, C.; Ozturk, A. K.; Moliterno, J. A.; Erturk, O.; Bayrakli, F.; Korkmaz, B.; DiLuna, M. L.; Yasuno, K.; Bilguvar, K.; Ozcelik, T.; Tuysuz, B.; State, M. W.; Gunel, M.Congenital ataxia with cerebellar hypoplasia is a heterogeneous group of disorders that presents with motor disability, hypotonia, incoordination, and impaired motor development. Among these, disequilibrium syndrome describes a constellation of findings including non-progressive cerebellar ataxia, mental retardation, and cerebellar hypoplasia following an autosomal recessive pattern of inheritance and can be caused by mutations in the Very Low Density Lipoprotein Receptor (VLDLR). Interestingly, while the majority of patients with VLDL-associated cerebellar hypoplasia in the literature use bipedal gait, the previously reported patients of Turkish decent have demonstrated similar neurological sequelae, but rely on quadrupedal gait. We present a consanguinous Turkish family with two siblings with cerebellar atrophy, predominantly frontal pachygyria and ataxic bipedal gait, who were found to have a novel homozygous deletion in the VLDLR gene identified by using high-density single nucleotide polymorphism microarrays for homozygosity mapping and identification of CNVs within these regions. Discovery of disease causing homozygous deletions in the present Turkish family capable of maintaining bipedal movement exemplifies the phenotypic heterogeneity of VLDLR-associated cerebellar hypoplasia and ataxia.Item Open Access SOX1 antibodies are markers of paraneoplastic Lambert-Eaton myasthenic syndrome(Lippincott Williams & Wilkins, 2008) Sabater, L.; Titulaer, M.; Saiz, A.; Verschuuren, J.; Güre, A. O.; Graus, F.BACKGROUND/OBJECTIVE: We reported that 43% of patients with Lambert-Eaton myasthenic syndrome (LEMS) and small cell lung cancer (SCLC) had an antibody called anti-glial nuclear antibody (AGNA), defined by the immunoreaction with the nuclei of the Bergmann glia of the cerebellum. This study was undertaken to identify the antigen recognized by AGNA and to confirm the association with paraneoplastic LEMS in a larger series. METHODS: We probed a fetal brain cDNA library with AGNA-positive sera. The presence of antibodies against the isolated antigen was detected by immunoblot of phage plaques from two positive clones. We studied 105 patients with LEMS (55 with SCLC), 50 with paraneoplastic neurologic syndromes, SCLC, and Hu antibodies, and 50 with only SCLC. RESULTS: Probing of the fetal brain expression library with AGNA sera resulted in the isolation of SOX1, a highly immunogenic tumor antigen in SCLC. IgG eluted from SOX1 clones produced the same cerebellar immunoreactivity as of AGNA sera. SOX1 antibodies were present in 64% of patients with LEMS and SCLC but in none of the 50 with idiopathic LEMS (p < 0.0001). Compared with paraneoplastic LEMS, the frequency of SOX1 antibodies was significantly lower in patients with Hu antibodies (32%, p = 0.002) and in those with only SCLC (22%). CONCLUSIONS: SOX1 is the antigen recognized by anti-glial nuclear antibody-positive sera. The detection of SOX1 antibodies in patients with Lambert-Eaton myasthenic syndrome (LEMS) predicts the presence of small cell lung cancer and may be used to follow more closely those LEMS patients with no evidence of cancer at the initial workup.