Browsing by Subject "Gaussian Mixture Model"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Human activity classification with miniature inertial and magnetic sensor signals(IEEE, 2011) Yüksek, Murat Cihan; Barshan, BillurThis study provides a comparative performance assessment of various pattern recognition techniques on classifying human activities that are performed while wearing miniature inertial and magnetic sensors. Activities are classified using five sensor units worn on the chest, the arms, and the legs. Each sensor unit comprises a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. The classification techniques compared in this study are: naïve Bayesian (NB), artificial neural networks (ANN), dissimilaritybased classifier (DBC), various decision-tree algorithms, Gaussian mixture model (GMM), and support vector machines (SVM). The methods that result in the highest correct differentiation rates are found to be GMM (99.1%), ANN (99.0%), and SVM (98.9%). © 2011 EURASIP.Item Open Access A hybrid SVM/HMM based system for the state detection of individual finger movements from multichannel ECoG signals(IEEE, 2011) Onaran, İbrahim; Ince, N.F.; Çetin, A. Enis; Abosch, A.A hybrid state detection algorithm is presented for the estimation of baseline and movement states which can be used to trigger a free paced neuroprostethic. The hybrid model was constructed by fusing a multiclass Support Vector Machine (SVM) with a Hidden Markov Model (HMM), where the internal hidden state observation probabilities were represented by the discriminative output of the SVM. The proposed method was applied to the multichannel Electrocorticogram (ECoG) recordings of BCI competition IV to identify the baseline and movement states while subjects were executing individual finger movements. The results are compared to regular Gaussian Mixture Model (GMM)-based HMM with the same number of states as SVM-based HMM structure. Our results indicate that the proposed hybrid state estimation method out-performs the standard HMM-based solution in all subjects studied with higher latency. The average latency of the hybrid decoder was approximately 290ms. © 2011 IEEE.Item Open Access Minyatür eylemsizlik duyucuları ve manyetometre sinyallerinin işlenmesiyle insan aktivitelerinin sınıflandırılması(IEEE, 2011-04) Yüksek, Murat Cihan; Barshan, BillurBu çalışmada insan vücuduna yerleştirilen minyatür eylemsizlik duyucuları ve manyetometreler kullanılarak çeşitli aktiviteler örüntü tanıma yöntemleriyle ayırdedilmiş ve karşılaştırmalı bir çalışmanın sonuçları sunulmuştur. Ayırdetme işlemi için basit Bayeşçi (BB) yöntem, yapay sinir ağları (YSA), benzeşmezlik tabanlı sınıflandırıcı (BTS), ceşitli karar ağacı (KA) yöntemleri, Gauss karışım modeli (GKM) ve destek vektör makinaları (DVM) kullanılmıştır. Aktiviteler gövdeye, kollara ve bacaklara takılan beş duyucu ünitesinden gelen verilerin işlenmesiyle ayırdedilmiştir. Her ünite, her biri üç-eksenli olmak üzere birer ivmeölçer, dönüölçer ve manyetometre içermektedir. Çalışmanın sonuçlarına göre, en iyi ilk üç başarı oranı sırasıyla GKM (%99.12), YSA (%99.09) ve DVM (%98.90) yöntemleri ile elde edilmiştir.Item Open Access Source and filter estimation for Throat-Microphone speech enhancement(Institute of Electrical and Electronics Engineers Inc., 2016) Turan, M. A. T.; Erzin, E.In this paper, we propose a new statistical enhancement system for throat microphone recordings through source and filter separation. Throat microphones (TM) are skin-attached piezoelectric sensors that can capture speech sound signals in the form of tissue vibrations. Due to their limited bandwidth, TM recorded speech suffers from intelligibility and naturalness. In this paper, we investigate learning phone-dependent Gaussian mixture model (GMM)-based statistical mappings using parallel recordings of acoustic microphone (AM) and TM for enhancement of the spectral envelope and excitation signals of the TM speech. The proposed mappings address the phone-dependent variability of tissue conduction with TM recordings. While the spectral envelope mapping estimates the line spectral frequency (LSF) representation of AM from TM recordings, the excitation mapping is constructed based on the spectral energy difference (SED) of AM and TM excitation signals. The excitation enhancement is modeled as an estimation of the SED features from the TM signal. The proposed enhancement system is evaluated using both objective and subjective tests. Objective evaluations are performed with the log-spectral distortion (LSD), the wideband perceptual evaluation of speech quality (PESQ) and mean-squared error (MSE) metrics. Subjective evaluations are performed with an A/B comparison test. Experimental results indicate that the proposed phone-dependent mappings exhibit enhancements over phone-independent mappings. Furthermore enhancement of the TM excitation through statistical mappings of the SED features introduces significant objective and subjective performance improvements to the enhancement of TM recordings. ©2015 IEEE.Item Open Access Unsupervised classification of remotely sensed images using Gaussian mixture models and particle swarm optimization(IEEE, 2010) Arı, Çağlar; Aksoy, SelimGaussian mixture models (GMM) are widely used for un-supervised classification applications in remote sensing. Expectation-Maximization (EM) is the standard algorithm employed to estimate the parameters of these models. However, such iterative optimization methods can easily get trapped into local maxima. Researchers use population-based stochastic search algorithms to obtain better estimates. We present a novel particle swarm optimization-based algorithm for maximum likelihood estimation of Gaussian mixture models. The proposed approach provides solutions for important problems in effective application of population-based algorithms to the clustering problem. We present a new parametrization for arbitrary covariance matrices that allows independent updating of individual parameters during the search process. We also describe an optimization formulation for identifying the correspondence relations between different parameter orderings of candidate solutions. Experiments on a hyperspectral image show better clustering results compared to the commonly used EM algorithm for estimating GMMs. © 2010 IEEE.