Browsing by Subject "Gated recurrent unit (GRU)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Efficient online learning algorithms based on LSTM neural networks(Institute of Electrical and Electronics Engineers, 2018) Ergen, Tolga; Kozat, Süleyman SerdarWe investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.Item Open Access Unsupervised anomaly detection with LSTM neural networks(IEEE, 2020) Ergen, T.; Kozat, Süleyman SerdarWe investigate anomaly detection in an unsupervised framework and introduce long short-term memory (LSTM) neural network-based algorithms. In particular, given variable length data sequences, we first pass these sequences through our LSTM-based structure and obtain fixed-length sequences. We then find a decision function for our anomaly detectors based on the one-class support vector machines (OC-SVMs) and support vector data description (SVDD) algorithms. As the first time in the literature, we jointly train and optimize the parameters of the LSTM architecture and the OC-SVM (or SVDD) algorithm using highly effective gradient and quadratic programming-based training methods. To apply the gradient-based training method, we modify the original objective criteria of the OC-SVM and SVDD algorithms, where we prove the convergence of the modified objective criteria to the original criteria. We also provide extensions of our unsupervised formulation to the semisupervised and fully supervised frameworks. Thus, we obtain anomaly detection algorithms that can process variable length data sequences while providing high performance, especially for time series data. Our approach is generic so that we also apply this approach to the gated recurrent unit (GRU) architecture by directly replacing our LSTM-based structure with the GRU-based structure. In our experiments, we illustrate significant performance gains achieved by our algorithms with respect to the conventional methods.