Browsing by Subject "Gallium Nitride"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access GaN based LNA MMICs for X-band applications(Institute of Electrical and Electronics Engineers, 2020) Zafar, Salahuddin; Osmanoğlu, Sinan; Öztürk, Mustafa; Çankaya, Büşra; Yılmaz, Doğan; Kashif, A. U.; Özbay, EkmelIn this paper, we report two low noise broadband amplifiers based on ABMN's AlGaN/GaN on SiC HEMT technology for X-band applications. Two design topologies, a single-stage (LNA-1) and a two-stage (LNA-2), have been investigated. LNA-1 and the first stage of LNA-2 is based on common source (CS) with inductive source degeneration topology. LNA-1 has a flat gain response of ±1.4 dB gain variation with a gain greater than 8 dB for 9 V drain voltage and 100 mA/mm drain current. Input return loss better than 9.8 dB and output return loss better than 12.8 dB have been achieved. The simulated value of noise figure for this design is less than 1.4 dB. In LNA-2 design, a two-stage topology is implemented to enhance amplifier's gain. The simulated values for LNA-2 show a gain greater than 16.8 dB with ±2.9 dB gain variation. Input and output return loss values are better than 8.8 dB and 10 dB, respectively. The value of noise figure for this design is less than 1.7 dB in the desired frequency range. Both designs, having state-of-the art small dimensions, are suitable for their potential applications for space communications, Radar, satellite communications etc.Item Open Access Improved hole distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers(AIP Publishing, 2013) Ju, Z. G.; Liu, W.; Zhang, Z. H.; Tan, S. T.; Ji, Y.; Kyaw, Z. B.; Zhang, X. L.; Lu, S. P.; Zhang, Y. P.; Zhu, B.; Hasanov, N.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) with graded-thickness quantum barriers (GTQB) are designed and grown by metal-organic chemical-vapor deposition. The proposed GTQB structure, in which the barrier thickness decreases from the n-GaN to p-GaN side, was found to lead to an improved uniformity in the hole distribution and thus, radiative recombination rates across the active region. Consequently, the efficiency droop was reduced to 28.4% at a current density of 70 A/cm2, which is much smaller than that of the conventional equal-thickness quantum barriers (ETQB) LED, which is 48.3%. Moreover, the light output power was enhanced from 770 mW for the ETQB LEDs to 870 mW for the GTQB LEDs at 70 A/cm2. © 2013 AIP Publishing LLC.Item Open Access Low temperature thin films transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels(AIP Publishing LLC, 2014) Bolat, S.; Ozgit Akgun, C.; Tekcan, B.; Bıyıklı, Necmi; Okyay, Ali KemalWe report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (ION/I OFF) of 103 and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far. © 2014 AIP Publishing LLC.