Browsing by Subject "Fundamental band gap"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Interaction of adatoms and molecules with single-layer arsenene phases(American Chemical Society, 2016-06) Ersan, F.; Aktürk, E.; Çıracı, SalimRecent studies have shown that arsenic can form single-layer phases in buckled honeycomb as well as symmetric washboard structures, named as arsenene. These structures are stable even in freestanding form and are nonmagnetic semiconductors in the energy range which is suitable for various electronic applications. In this study we investigated the adsorption of selected adatoms (H, Li, B, C, N, O, Al, Si, P, Cl, Ti, Ga, Ge, As, Se, and Sb) and physisorption of molecules (H2, O2, and H2O) to these two arsene phases. Since the interaction of these adspecies with arsenene are studied using large supercells, the coupling between adspecies is minimized, and hence our results can be interpreted to mimic the effects of isolated adatom or physisorbed molecule. It is found that the adatoms form strong chemisorption bonds and hence modify the atomic structure and physical properties locally. Some of the adatoms give rise to significant local reconstruction of the atomic structure. Electronic states of some adatoms become spin polarized and attain net magnetic moments; they may even display half-metallic character at high coverage. A majority of adsorbed atoms give rise to localized states in the fundamental band gap. We showed that the interactions between H2, O2, and H2O molecules and single-layer arsenene are rather weak and do not cause any significant changes in the physical properties of these molecules, as well as those of arsenene phases. However, some of these molecules can be dissociated at the edges of the flakes of arsenene structures; their constituents are adsorbed to the edge atoms and cause local reconstructions.Item Open Access Lateral and vertical heterostructures of h-GaN/h-AlN: electron confinement, band lineup, and quantum structures(American Chemical Society, 2017-11) Onen, A.; Kecik, D.; Durgun, Engin; Çıracı, SalimLateral and vertical heterostructures constructed of two-dimensional (2D) single-layer h-GaN and h-AlN display novel electronic and optical properties and diverse quantum structures to be utilized in 2D device applications. Lateral heterostructures formed by periodically repeating narrow h-GaN and h-AlN stripes, which are joined commensurately along their armchair edges, behave as composite semiconducting materials. Direct-indirect characters of the fundamental band gaps and their values vary with the widths of these stripes. However, for relatively wider stripes, electronic states are confined in different stripes and make a semiconductor-semiconductor junction with normal band alignment. This way one-dimensinonal multiple quantum well structures can be generated with electrons and holes confined to h-GaN stripes. Vertical heterostructures formed by thin stacks of h-GaN and h-AlN are composite semiconductors with a tunable fundamental band gap. However, depending on the stacking sequence and number of constituent sheets in the stacks, the vertical heterostructure can transform into a junction, which displays staggered band alignment with electrons and holes separated in different stacks. The weak bonds between the cations and anions in adjacent layers distinguish these heterostructures from those fabricated using thin films of GaN and AlN thin films in wurtzite structure, as well as from van der Waals solids. Despite the complexities due to confinement effects and charge transfer across the interface, the band diagram of the heterostructures in the direct space and band lineup are conveniently revealed from the electronic structure projected to the atoms or layers. Prominent features in the optical spectra of the lateral composite structures are observed within the limits of those of 2D parent constituents; however, significant deviations from pristine 2D constituents are observed for vertical heterostructures. Important dimensionality effects are revealed in the lateral and vertical heterostructures.