BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Fractional Fourier Transform"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Deep fractional Fourier networks
    (2024-08) Koç, Emirhan
    This thesis introduces the integration of the fractional Fourier Transform (FrFT) into the deep learning domain, with the aim of opening new avenues for incorporating signal processing into deep neural networks (DNNs). This work starts by introducing FrFT into recurrent neural networks (RNNs) for time series prediction, leveraging its ability and flexibility to perform infinitely many continuous transformations and offering an alternative to the traditional Fourier Transform (FT). Despite the initial success, a significant challenge identified is the manual tuning of the fraction order parameter a, which can be cumbersome and limits broader applicability. To overcome this limitation, we introduce a novel approach where the fraction order a is treated as a learnable parameter within deep learning models. First, a theoretical foundation is established to support the learnability of this parameter, followed by extensive experimentation in image classification and time series prediction tasks. The results demonstrate that incorporating a learnable fraction order significantly improves model performance, particularly when integrated with well-known architectures such as ResNet and VGG models. Furthermore, the thesis proposes fractional Fourier Pooling (FrFP), a pooling technique that replaces traditional Global Average Pooling (GAP) layers in Convolutional Neural Networks (CNNs). FrFP enhances feature representation by processing intermediate signal regions, leading to better model performance and offering a new perspective on integrating signal transformations within deep learning frameworks. Overall, this thesis contributes to the growing body of research exploring advanced signal processing techniques in deep learning, highlighting the potential of FrFT as a powerful tool for improving model accuracy and efficiency across various applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The discrete fractional Fourier transform
    (1998) Candan, Çağatay
    In this work, the discrete counterpart of the continuous Fractional Fourier Transform (FrFT) is proposed, discussed and consolidated. The discrete transform generalizes the Discrete Fourier Transform (DFT) to arbitrary orders, in the same sense that the continuous FrFT generalizes the continuous time Fourier Transform. The definition proposed satisfies the requirements of unitarity, additivity of the orders and reduction to DFT. The definition proposed tends to the continuous transform as the dimension of the discrete transform matrix increases and provides a good approximation to the continuous FrFT for the finite dimensional matrices. Simulation results and some properties of the discrete FrFT are also discussed.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback