Browsing by Subject "Fourier transformation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Approximate fourier domain expression for bloch-siegert shift(John Wiley and Sons Inc., 2015) Turk, E. A.; Ider, Y. Z.; Ergun, A. S.; Atalar, ErginPurpose: In this study, a newsimple Fourier domain-based analytical expression for the Bloch-Siegert (BS) shift-based B1 mapping method is proposed to obtain |B1+| more accurately while using short BS pulse durations and small off-resonance frequencies.Theory and Methods: A new simple analytical expression for the BS shift is derived by simplifying the Bloch equations. In this expression, the phase is calculated in terms of the Fourier transform of the radiofrequency pulse envelope, and thus making the off- and on-resonance effects more easily understandable. To verify the accuracy of the proposed expression, Bloch simulations and MR experiments are performed for the hard, Fermi, and Shinner-Le Roux pulse shapes.Results: Analyses of the BS phase shift-based B1 mapping method in terms of radiofrequency pulse shape, pulse duration, and off-resonance frequency show that |B1+| can be obtained more accurately with the aid of this new expression.Conclusions: In this study, a new simple frequency domain analytical expression is proposed for the BS shift. Using this expression, |B1+| values can be predicted from the phase data using the frequency spectrum of the radiofrequency pulse. This method works well even for short pulse durations and small offset frequencies.Item Open Access Effects of laser ablated silver nanoparticles on Lemna minor(Elsevier, 2014) Üçüncü, E.; Özkan, A. D.; Kurşungöz, C.; Ülger, Z. E.; Ölmez, T. T.; Tekinay, T.; Ortaç, B.; Tunca E.Item Open Access Spin-dependent analysis of two-dimensional electron liquids(The American Physical Society, 2002) Bulutay, C.; Tanatar, BilalTwo-dimensional electron liquid (2D EL) at full Fermi degeneracy is revisited, giving special attention to the spin-polarization effects. First, we extend the recently proposed classical-map hypernetted-chain (CHNC) technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation of CHNC is given utilizing Lado's quadrature expressions for the isotropic Fourier transforms. Our results indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even though the energy separation with the ferromagnetic and other partially polarized states become minute. We analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are computed; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of the 2D EL.