Browsing by Subject "Fourier planes"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Signal processing for three-dimensional holographic television displays that use binary spatial light modulators(IEEE, 2010) Ulusoy, Erdem; Onural, Levent; Özaktaş, Haldun M.One of the important techniques used for three dimensional television (3DTV) is holography. In holographic 3DTV, spatial light modulators (SLM) are used as the display device. SLMs that provide the most limited modulation are the binary SLMs, since only two different values can be assigned to their pixels. An important signal processing problem arising here is the determination of the binary signal to be written on the SLM among the possible ones such that the desired light field is generated to the best extent. Many of the proposed methods do not produce satisfactory results in terms of error rate, computational performance or light efficiency. We propose an optical setup to be placed in front of the binary SLM and the associated signal processing algorithm. The proposed system uses a 4-f setup and a periodic mask is placed to the Fourier plane. As a result, the binary SLM is convolved with a series of regularly spaced impulse functions and we get a new SLM which is smaller in pixel count compared to binary SLM but which can provide 16-bit full complex modulation. It becomes easier to generate the desired light field with this new SLM. Also, the required computations are carried out in a fast manner to enable real-time operation. ©2010 IEEE.Item Open Access Synthesis of three-dimensional light fields with binary spatial light modulators(Optical Society America, 2011-05-24) Ulusoy, E.; Onural, L.; Özaktaş, Haldun M.Computation of a binary spatial light modulator (SLM) pattern that generates a desired light field is a challenging quantization problem for which several algorithms have been proposed, mainly for far-field or Fourier plane reconstructions. We study this problem assuming that the desired light field is synthesized within a volumetric region in the non-far-field range after free space propagation from the SLM plane. We use Fresnel and Rayleigh-Sommerfeld scalar diffraction theories for propagation of light. We show that, when the desired field is confined to a sufficiently narrow region of space, the ideal gray-level complex-valued SLM pattern generating it becomes sufficiently low pass (oversampled) so it can be successfully halftoned into a binary SLM pattern by solving two decoupled real-valued constrained halftoning problems. Our simulation results indicate that, when the synthesis region is considered, the binary SLM is indistinguishable from a lower resolution full complex gray-level SLM. In our approach, free space propagation related computations are done only once at the beginning, and the rest of the computation time is spent on carrying out standard image halftoning.