Browsing by Subject "Forest fire detection"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Additive neural network for forest fire detection(Springer, 2020) Pan, H.; Badawi, D.; Zhang, X.; Çetin, Ahmet EnisIn this paper, we introduce a video-based wildfire detection scheme based on a computationally efficient additive deep neural network, which we call AddNet. This AddNet is based on a multiplication-free vector operator, which performs only addition and sign manipulation operations. In this regard, we construct a dot product-like operation from the mf-operator and use it to define dense and convolutional feed-forwarding passes in AddNet. We train AddNet on images taken from forestry surveillance cameras. Our experiments show that AddNet can achieve a time-saving by 12.4% when compared to an equivalent regular convolutional neural network (CNN). Furthermore, the smoke recognition performance of AddNet is as good as regular CNNs and substantially better than binary-weight neural networks.Item Open Access A framework for use of wireless sensor networks in forest fire detection and monitoring(Elsevier Ltd., 2012) Aslan, Y. E.; Korpeoglu, I.; Ulusoy, T.Forest fires are one of the main causes of environmental degradation nowadays. Current surveillance systems for forest fires lack in supporting real-time monitoring of every point of a region at all times and early detection of fire threats. Solutions using wireless sensor networks, on the other hand, can gather sensory data values, such as temperature and humidity, from all points of a field continuously, day and night, and, provide fresh and accurate data to the fire-fighting center quickly. However, sensor networks face serious obstacles like limited energy resources and high vulnerability to harsh environmental conditions, that have to be considered carefully. In this paper, we propose a comprehensive framework for the use of wireless sensor networks for forest fire detection and monitoring. Our framework includes proposals for the wireless sensor network architecture, sensor deployment scheme, and clustering and communication protocols. The aim of the framework is to detect a fire threat as early as possible and yet consider the energy consumption of the sensor nodes and the environmental conditions that may affect the required activity level of the network. We implemented a simulator to validate and evaluate our proposed framework. Through extensive simulation experiments, we show that our framework can provide fast reaction to forest fires while also consuming energy efficiently. © 2012 Elsevier Ltd.