Browsing by Subject "Food packaging"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging(Elsevier, 2017-10) Aytac Z.; Ipek, S.; Durgun, Engin; Tekinay, T.; Uyar, TamerThymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), 1H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1). It is worth mentioning that zein-THY/γ-CD-IC-NF (2:1) preserved much more THY as observed in TGA and stability of THY/γ-CD-IC (2:1) was higher, as shown by a modelling study. Therefore, much more THY was released from zein-THY/γ-CD-IC-NF (2:1) than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). Similarly, antibacterial activity of zein-THY/γ-CD-IC-NF (2:1) was higher than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). It was demonstrated that zein-THY/γ-CD-IC-NF (2:1) was most effective in inhibiting the growth of bacteria on meat samples. These webs show potential application as an antibacterial food packaging material.Item Open Access Antifouling superhydrophobic surfaces with bactericidal and SERS activity(Elsevier BV, 2022-03-01) Şahin, F.; Çelik, N.; Ceylan, A.; Pekdemir, S.; Ruzi, M.; Önses, Mustafa SerdarFouling and contamination of surfaces are prevailing challenges humanities facing today in fields such as healthcare, hospitality, and food manufacturing. These challenges strongly motivate the development of multifunctional surfaces with antifouling and antimicrobial properties that are coupled with sensing capabilities. To address this challenge, we prepared a multifunctional superhydrophobic surface using eco-friendly materials: polydimethylsiloxane (PDMS) and carnauba wax. After deposition of a thin film of Ag, the surface gained surface-enhanced Raman scattering (SERS) activity and bactericidal property. The multifunctional superhydrophobic surface showed extreme liquid repellency towards water and common liquid food. The strong SERS activity enabled the detection of adulterant rhodamine B in a sausage down to a nanomolar level. Notably, the surface showed excellent bactericidal activity towards two common bacteria, E. coli, and S. aureus, significantly reducing their adhesion and killing. Additionally, the surface showed anti-fouling behavior against common liquid food, and even towards sticky foods such as yogurt, honey, and pomegranate sauce, reducing residual food by >97 %. Furthermore, the superhydrophobic surface showed excellent chemical stability in dynamic and static flow conditions and leaching of Ag in neutral and basic solutions was minimal.Item Open Access Electrospinning of cyclodextrin functionalized nanofibers and their applications(2016-08) Aytaç, ZeynepElectrospinning is a widely used versatile method to produce nanofibers with high surface to volume ratio and porous structure. Owing to the unique properties, electrospun nanofibers are of great importance as a carrier matrix for drugs; antioxidant, and antibacterial agents, flavour/fragrances. Though polymers are material of choice for producing electrospun nanofibers, it is likely to obtain nanofibers from low molecular weight molecules. Cyclodextrin (CDs) are intriguing molecules having the capability of forming inclusion complex (IC) with numerous guest molecules such as drugs, food additives, flavour/fragrances, antioxidant and antibacterial agents. Therefore, CD-ICs enhance solubility, reduce volatility, and provide controlled release of the guest molecules. Integrating CD-ICs with electrospinning opens a new door to produce remarkable materials. In this thesis, nanofibers containing CD-ICs of bioactive agents including antioxidant/antibacterial and flavour/fragrance molecules were produced via electrospinning technique. Firstly, CD-ICs of antioxidant/antibacterial compounds (gallic acid, α-tocopherol, quercetin, and thymol) were synthesized and then, added into polylactic acid or zein solutions to produce CD-IC incorporated electrospun polymeric nanofibers. Afterwards, the release behavior, antioxidant and antibacterial activity of these nanofibers were investigated. In addition, the potential use of these nanofibers as active food packaging and delivery material was revealed by packing meat samples by these nanofibers. Secondly, electrospun nanofibers were developed as a releasing material from CD-ICs of volatile flavour/fragrance molecules (geraniol, limonene, and linalool) without using polymeric matrix. The preservation of volatile compounds is shown to be possible to a great extent with antibacterial CD-IC nanofibers. Furthermore, the shelf life of flavour/fragrance molecules has been enhanced at least 50 days by CD-IC nanofibers. Finally, for the first time in the literature core-shell nanofibers were designed by using CD-IC of curcumin, an antioxidant molecule and polylactic acid solutions as core and shell, respectively. The ability of core-shell nanofibers as a drug delivery carrier was suggested by release and antioxidant activity tests. To conclude, CD-IC incorporated electrospun nanofibers produced by three different approach is shown to be used as efficient material for various applications particularly for food packaging and drug delivery.Item Open Access Encapsulation of active agents in electrospun nanofibers/nanowebs(The Fiber Society, 2013) Kayaci, Fatma; Aytac, Zeynep; Celebioglu, Asli; Uyar, TamerIn this study, we produce functional nanofibers/nanowebs containing active agents such as essential oils, antibacterials, antioxidants, flavors/fragrances via electrospinning technique. The encapsulation of these active agents into electrospun nanofibers/nanowebs was quite possible, however, their stability and/or shelf-life was limited due to their volatile nature. Nevertheless, by forming cyclodextrin inclusion complexes (CD-IC) with these active agents and incorporating CD-IC into electrospun nanofibers/nanowebs, we achieved high temperature stability, slow release and prolonged shelf-life for these active agents. These functional electrospun nanofibers/nanowebs containing active agents can be quite applicable in active food packaging, textiles, biotechnology, etc.Item Open Access Superhydrophobic coatings for food packaging applications: A review(Elsevier, 2022-06) Ruzi, M.; Celik, N.; Onses, M. SerdarFood waste is a serious problem in our modern era, causing economic loss and exacerbating issues like hunger, environmental pollution, and water shortage. Residual food is one main culprit that can be easily eliminated by proper packaging. Advanced packaging techniques with self-cleaning and anti-fouling capabilities are critically important to tackle this issue. In this regard, superhydrophobic coatings are emerging as an innovative approach to address many critical issues in the food industry. Superhydrophobic coatings can prevent fouling and contamination of food packages. An additional capability is the minimization of food waste and improving consumer experience due to the easy sliding of food from the inner side of the package. In this article, we provide an overview of recent studies on the application of superhydrophobic coatings and surfaces for food packaging applications, with a focus on studies aimed at reducing residual food waste via superhydrophobic coatings prepared from edible, nontoxic, and ecofriendly materials.