Browsing by Subject "Fluid dynamics"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Animation of boiling phenomena(IEEE, 2008-05) Bülbül, Abdullah; Küçüktunç, Onur; Özgüç, BülentPhenomenon of boiling is a challenging topic for computer graphics due to its complex hydrodynamics and formulation. Realistic fluid animations require very heavy three-dimensional fluid flow calculations, and surface estimations as well. However, realism and performance are the two important objectives of the boiling animation for a real-time application. We present an efficient method for the simulation of boiling water in this paper. The method is based on modeling the bubbles and waves as particles. Grid-based approach is used both for the heating and the fluid surface. Our technique makes it possible to produce the animation of boiling phenomena nearly in real-time. ©2008 IEEE.Item Open Access Homogenization of soft interfaces in time-dependent hydrodynamic lubrication(Springer Verlag, 2015) Kabacaoğlu, G.; Temizer, İ.The difficulty behind the unsteady lubrication problem is the oscillation of the film thickness in both position and time. The present study aims to extend the multiscale analysis of lubricated interfaces to the unsteady hydrodynamic lubrication case with deformable random microrough surfaces. For that purpose, the homogenization framework for the time-dependent problem is first presented in a setting that unifies all hydrodynamic lubrication cases. The differences between the periodic commensurate and incommensurate as well as random microrough surfaces are highlighted with numerical investigations. A time averaging method is proposed in order to deliver the effective macroscopic response and its efficacy is discussed for different types of microrough surfaces. Finally, the deformation is implemented through the numerically efficient Taylor assumption at the microscale and the ability of the proposed method to reflect the deformation effects is discussed. © 2015, Springer-Verlag Berlin Heidelberg.Item Open Access Homogenization-based design of surface textures in hydrodynamic lubrication(John Wiley and Sons Ltd, 2016) Waseem, A.; Temizer, İ.; Kato, J.; Terada, K.An optimization framework is developed for surface texture design in hydrodynamic lubrication. The microscopic model of the lubrication interface is based on the Reynolds equation, and the macroscopic response is characterized through homogenization. The microscale setting assumes a unilateral periodic texture but implicitly accounts for the bilateral motion of the surfaces. The surface texture in a unit cell is described indirectly through the film thickness, which is allowed to vary between prescribed minimum and maximum values according to a morphology variable distribution that is obtained through the filtering of a design variable. The design and morphology variables are discretized using either element-wise constant values or through first-order elements. In addition to sharp textures, which are characterized by pillars and holes that induce sudden transitions between extreme film thickness values, the framework can also attain a variety of non-standard smoothly varying surface textures with a macroscopically isotropic or anisotropic response. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.Item Open Access Linear and nonlinear stability of a quasigeostrophic mixing layer subject to a uniform background shear(American Physical Society, 2019) Biancofiore, Luca; Umurhan, O. M.The aim of this work is to shed light by revisiting, from the kernel-wave (KW) perspective, the breakdown of a quasigeostrophic (QG) mixing layer (or vortex strip or filament) in atmosphere under the influence of a background shear. The QG mixing layer is modeled with a family of quasi-Rayleigh velocity profiles in which the potential vorticity (PV) is constant in patches. From the KW perspective, a counterpropagating Rossby wave (CRW) is created at each PV edge, i.e., the edge where a PV jump is located. The important parameters of our study are (i) the vorticity of the uniform shear m and (ii) the Rossby deformation radius Ld, which indicates how far the pressure perturbations can vertically propagate. While an adverse shear (m<0) stabilizes the system, a favorable shear (m>0) strengthens the instability. This is due to how the background shear affects the two uncoupled CRWs by shifting the optimal phase difference towards large (small) wave number when m<0 (m>0). As a finite Ld is introduced, a general weakening of the instability is noticed, particularly for m>0. This is mainly due to the reduced interaction between the two CRWs when Ld is finite. Furthermore, nonlinear pseudospectral simulations in the nominally infinite-Reynolds-number limit were conducted using as the initial base flow the same quasi-Rayleigh profiles analyzed in the linear analysis. The growth of the mixing layer is obstructed by introducing a background shear, especially if adverse, since the vortex pairing, which is the main growth mechanism in mixing layers, is strongly hindered. Interestingly, the most energetic configuration is for m=0, which differs from the linear analyses for which the largest growth rates were found for a positive m. In the absence of a background shear additional modes are subharmonically triggered by the initial disturbance enhancing the turbulent character of the flow. We also confirm energy spectrum trends for broken-down mixing layers reported in the literature. We interpret the character of mixing-layer breakdown as being a phenomenological hybrid of Kraichnan's [R. H. Kraichnan, Phys. Fluids 10, 1417 (1967)] direct enstrophy cascade picture and the picture of self-similar vortex production.Item Open Access A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing(Institute of Physics Publishing, 2015) Guler, M. T.; Bilican, I.; Agan, S.; Elbuken, C.In this paper, we present a very simple method to fabricate three-dimensional (3D) microelectrodes integrated with microfluidic devices. We form the electrodes by etching a microwire placed across a microchannel. For precise control of the electrode spacing, we employ a hydrodynamic focusing microfluidic device and control the width of the etching solution stream. The focused widths of the etchant solution and the etching time determine the gap formed between the electrodes. Using the same microfluidic device, we can fabricate integrated 3D electrodes with different electrode gaps. We have demonstrated the functionality of these electrodes using an impedimetric particle counting setup. Using 3D microelectrodes with a diameter of 25 μm, we have detected 6 μm-diameter polystyrene beads in a buffer solution as well as erythrocytes in a PBS solution. We study the effect of electrode spacing on the signal-to-noise ratio of the impedance signal and we demonstrate that the smaller the electrode spacing the higher the signal obtained from a single microparticle. The sample stream is introduced to the system using the same hydrodynamic focusing device, which ensures the alignment of the sample in between the electrodes. Utilising a 3D hydrodynamic focusing approach, we force all the particles to go through the sensing region of the electrodes. This fabrication scheme not only provides a very low-cost and easy method for rapid prototyping, but which can also be used for applications requiring 3D electric field focused through a narrow section of the microchannel.Item Open Access Solid or liquid? Solidification of a nanoconfined liquid under nonequilibrium conditions(American Chemical Society, 2006) Patil, S.; Matei, G.; Oral, A.; Hoffmann, P. M.There has been a long-standing debate about the physical state and possible phase transformations of confined liquids. In this report, we show that a model-confined liquid can behave both as a Newtonian liquid with very little change in its dynamics and as a pseudosolid, depending solely on the rate of approach of the confining surfaces. Thus, the confined liquid does not exhibit any confinement-induced solidification in thermodynamic equilibrium. Instead, solidification is induced kinetically when the two confining surfaces are approached with a minimum critical rate. This critical rate is surprisingly slow (on the order of 6 Å/s), explaining the frequent observation of confinement-induced solidification.Item Open Access Surface wave splitter based on metallic gratings with sub-wavelength aperture(Optical Society of American (OSA), 2008) Caglayan H.; Özbay, EkmelWe investigated the splitting of surface electromagnetic waves trapped at the output surface of a one-dimensional metallic grating structure. The output gratings of the structure asymmetrically such that the output surfaces at the different sides of the subwavelength aperture can support surface waves at different frequencies. The transmission amplitude as measured at the left side is 1,000 times of that at the right side at 16 GHz. At 24 GHz, the transmission measured at the right side is 20 times that of the left side of the structure. Therefore, surface waves are guided into the different sides of the aperture at different frequencies via metallic gratings. The experimental results are in agreement with the theoretical results. © 2008 Optical Society of America.