Browsing by Subject "Fixed-point iterations"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Dimensioning shared-per-node recirculating fiber delay line buffers in an optical packet switch(Elsevier, 2013) Akar, N.; Gunalay, Y.Optical buffering based on fiber delay lines (FDLs) has been proposed as a means for contention resolution in an optical packet switch. In this article, we propose a queuing model for feedback-type shared-per-node recirculating FDL optical buffers in asynchronous optical switching nodes. In this model, optical packets are allowed to recirculate over FDLs as long as the total number of recirculations is less than a pre-determined limit to meet signal loss requirements. Markov Modulated Poisson Process (MMPP)-based overflow traffic models and fixed-point iterations are employed to provide an approximate analysis procedure to obtain blocking probabilities as a function of various buffer parameters in the system when the packet arrival process at the optical switch is Poisson. The proposed algorithm is numerically efficient and accurate especially in a certain regime identified with relatively long and variably-sized FDLs, making it possible to dimension optical buffers in next-generation optical packet switching systems.Item Open Access Fixed point analysis of limited range share per node wavelength conversion in asynchronous optical packet switching systems(Springer New York LLC, 2009) Akar, N.; Karasan, E.; Raffaelli, C.In this article, we study an asynchronous optical packet switch equipped with a number of wavelength converters shared per node. The wavelength converters can be full range or circular-type limited range. We use the algorithmic methods devised for Markov chains of block-tridiagonal type in addition to fixed-point iterations to approximately solve this relatively complex system. In our approach, we also take into account the finite number of fiber interfaces using the Engset traffic model rather than the usual Poisson traffic modeling. The proposed analytical method provides an accurate approximation for full range systems for relatively large number of interfaces and for circular-type limited range wavelength conversion systems for which the tuning range is relatively narrow. © 2009 Springer Science+Business Media, LLC.Item Open Access State aggregation-based model of asynchronous multi-fiber optical switching with shared wavelength converters(Elsevier, 2013) Akar, N.; Raffaelli, C.; Savi, M.This paper proposes new analytical models to study optical packet switching architectures with multi-fiber interfaces and shared wavelength converters. The multi-fiber extension of the recently proposed Shared-Per-Input-Wavelength (SPIW) scheme is compared against the multi-fiber Shared-Per-Node (SPN) scheme in terms of cost and performance for asynchronous traffic. In addition to using Markov chains and fixed-point iterations for modeling the mono-fiber case, a novel state aggregation technique is proposed to evaluate the packet loss in asynchronous multi-fiber scenario. The accuracy of the performance models is validated by comparison with simulations in a wide variety of scenarios with both balanced and imbalanced input traffic. The proposed analytical models are shown to remarkably capture the actual system behavior in all scenarios we tested. The adoption of multi-fiber interfaces is shown to achieve remarkable savings in the number of wavelength converters employed and their range. In addition, the SPIW solution allows to save, in particular conditions, a significant number of optical gates compared to the SPN solution. Indeed, SPIW allows, if properly dimensioned, potential complexity and cost reduction compared to SPN, while providing similar performance.