Browsing by Subject "First-principles study"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access First principles prediction of the elastic, electronic, and optical properties of Sb 2S 3 and Sb 2Se 3 compounds(2012) Koc H.; Mamedov, A.M.; Deligoz, E.; Ozisik H.We have performed a first principles study of structural, mechanical, electronic, and optical properties of orthorhombic Sb 2S 3 and Sb 2Se 3 compounds using the density functional theory within the local density approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds have been obtained. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, Debye temperature, and hardness have also been estimated in the present work. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valence electrons and the effective optical dielectric constant are calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data. © 2012 Elsevier Masson SAS. All rights reserved.Item Open Access Mo2C as a high capacity anode material: a first-principles study(Royal Society of Chemistry, 2016) Çakir, D.; Sevik, C.; Gülseren, O.; Peeters, F. M.The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g-1 by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.Item Open Access Optical properties and electronic band structure of topological insulators on A2 5B36 compound based(IEEE, 2012) Koc H.; Mamedov, Amirullah M.; Özbay, EkmelWe have performed a first principles study of structural, electronic, and optical properties of rhombohedral Sb 2Te 3 and Bi 2Te 3 compounds using the density functional theory within the local density approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds have been obtained. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valance electrons and the effective optical dielectric constant are calculated and presented in the study © 2012 IEEE.Item Open Access Structural, elastic, and electronic properties of topological insulators: Sb2Te3 and Bi2Te3(IEEE, 2013) Koc H.; Mamedov, Amirullah M.; Özbay, EkmelWe have performed a first principles study of structural, elastic, and electronic properties of rhombohedral Sb2Te3 and Bi 2Te3 compounds using the density functional theory within the local density approximation. The lattice parameters of considered compounds have been calculated. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, and Debye temperature have also been estimated in the present work. The calculated electronic band structure shows that Sb2Te3 and Bi2Te 3 compounds have a direct forbidden band gap. Our structural estimation and some other results are in agreement with the available experimental and theoretical data. © 2013 IEEE.