BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "First-order optical systems"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Degrees of freedom of optical systems and signals with applications to sampling and system simulation
    (Optical Society of America, 2013) Oktem F.S.; Özaktaş, Haldun M.
    We study the degrees of freedom of optical systems and signals based on space-frequency (phase space) analysis. At the heart of this study is the relationship of the linear canonical transform domains to the space-frequency plane. Based on this relationship, we discuss how to explicitly quantify the degrees of freedom of first-order optical systems with multiple apertures, and give conditions for lossless transfer. Moreover, we focus on the degrees of freedom of signals in relation to the space-frequency support and provide a sub-Nyquist sampling approach to represent signals with arbitrary space-frequency support. Implications for simulating optical systems are also discussed. © 2013 Optical Society of America.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Linear canonical transforms, degrees of freedom, and sampling in optical signals and systems
    (IEEE, 2014) Özaktaş, Haldun M.; Öktem, F. S.
    We study the degrees of freedom of optical systems and signals based on space-frequency (phase-space) analysis. At the heart of this study is the relationship of the linear canonical transform domains to the space-frequency plane. Based on this relationship, we discuss how to explicitly quantify the degrees of freedom of first-order optical systems with multiple apertures, and give conditions for lossless transfer. Moreover, we focus on the degrees of freedom of signals in relation to the space-frequency support and provide a sub-Nyquist sampling approach to represent signals with arbitrary space-frequency support. Implications for simulating optical systems are also discussed.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback