Browsing by Subject "Finite-difference time-domain method"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Application of signal-processing techniques to dipole excitations in the finite-difference time-domain method(Taylor & Francis, 2002) Oğuz, U.; Gürel, LeventThe applications of discrete-time signal-processing techniques, such as windowing and filtering for the purpose of implementing accurate excitation schemes in the finite-difference time-domain (FDTD) method are demonstrated. The effects of smoothing windows of various lengths and digital lowpass filters of various bandwidths and characteristics are investigated on finite-source excitations of the FDTD computational domain. Both single-frequency sinusoidal signals and multifrequency arbitrary signals are considered.Item Open Access Reducing the dispersion errors of the finite-difference time-domain method for multifrequency plane-wave excitations(Taylor & Francis, 2003) Oğuz, U.; Gürel, LeventWe demonstrate the applications of discrete-time signal-processing (SP) techniques for the purpose of generating accurate plane waves in the finite-difference time-domain (FDTD) method. The SP techniques are used either to reduce the high-frequency content of the source excitation or to compute more precise incident-field values in the computational domain. The effects of smoothing windows of various lengths, digital lowpass filters of various bandwidths and characteristics, and polynomial interpolation schemes of various orders are investigated. Arbitrary signals with multifrequency content are considered.Item Open Access Transmitter-receiver-transmitter-configured ground-penetrating radars over randomly heterogeneous ground models(Wiley-Blackwell Publishing, Inc., 2002) Gürel, Levent; Oğuz, U.Ground-penetrating radar (GPR) problems are simulated using the finite-difference time-domain (FDTD) method. The GPR model is configured with arbitrarily polarized three antennas, two of which are transmitting antennas fed 180° out of phase. The receiver is placed in the middle of two transmitters, where it receives no direct coupling from the transmitting antennas. The ground is modeled as a dielectric, lossy, and heterogeneous medium. The performances of the transmitter-receiver-transmitter-configured GPRs above the heterogeneous ground models are investigated. The computational domain is terminated by perfectly matched layer (PML) absorbing boundaries. The PML is adapted to match both air and ground regions of the computation space.