Browsing by Subject "Finite-difference time-domain (FDTD)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Modeling of ground-penetrating-radar antennas with shields and simulated absorbers(IEEE, 2001) Oğuz, U.; Gürel, LeventA three-dimensional (3-D) finite-difference time domain (FDTD) scheme is employed to simulate ground-penetrating radars. Conducting shield walls and absorbers are used to reduce the direct coupling to the receiver. Perfectly matched layer (PML) absorbing boundary conditions are used for matching the multi-layered media and simulating physical absorbers inside the FDTD computational domain. Targets are modeled by rectangular prisms of arbitrary permittivity and conductivity. The ground is modeled by homogeneous and lossless dielectric media.Item Open Access Simulations of ground-penetrating radars over lossy and heterogeneous grounds(IEEE, 2001) Gürel, Levent; Oğuz, U.The versatility of the three-dimensional (3-D) finite-difference time-domain (FDTD) method to model arbitrarily inhomogeneous geometries is exploited to simulate realistic groundpenetrating radar (GPR) scenarios for the purpose of assisting the subsequent designs of high-performance GPR hardware and software. The buried targets are modeled by conducting and dielectric prisms and disks. The ground model is implemented as lossy with surface roughness, and containing numerous inhomogeneities of arbitrary permittivities, conductivities, sizes, and locations. The impact of such an inhomogeneous ground model on the GPR signal is demonstrated. A simple detection algorithm is introduced and used to process these GPR signals. In addition to the transmitting and receiving antennas, the GPR unit is modeled with conducting and absorbing shield walls, which are employed to reduce the direct coupling to the receiver. Perfectly matched layer absorbing boundary condition is used for both simulating the physical absorbers inside the FDTD computational domain and terminating the lossy and layered background medium at the borders.