Browsing by Subject "Finite strains"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Aspects of computational homogenization at finite deformations: a unifying review from Reuss' to Voigt's Bound(American Society of Mechanical Engineers (ASME), 2016) Saeb, S.; Steinmann, P.; Javili, A.The objective of this contribution is to present a unifying review on strain-driven computational homogenization at finite strains, thereby elaborating on computational aspects of the finite element method. The underlying assumption of computational homogenization is separation of length scales, and hence, computing the material response at the macroscopic scale from averaging the microscopic behavior. In doing so, the energetic equivalence between the two scales, the Hill Mandel condition, is guaranteed via imposing proper boundary conditions such as linear displacement, periodic displacement and antiperiodic traction, and constant traction boundary conditions. Focus is given on the finite element implementation of these boundary conditions and their influence on the overall response of the material. Computational frameworks for all canonical boundary conditions are briefly formulated in order to demonstrate similarities and differences among the various boundary conditions. Furthermore, we detail on the computational aspects of the classical Reuss' and Voigt's bounds and their extensions to finite strains. A concise and clear formulation for computing the macroscopic tangent necessary for FE2 calculations is presented. The performances of the proposed schemes are illustrated via a series of two- and three-dimensional numerical examples. The numerical examples provide enough details to serve as benchmarks. © 2016 by ASME.Item Open Access Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions(Springer Verlag, 2017) Javili, A.; Saeb, S.; Steinmann, P.In the past decades computational homogenization has proven to be a powerful strategy to compute the overall response of continua. Central to computational homogenization is the Hill–Mandel condition. The Hill–Mandel condition is fulfilled via imposing displacement boundary conditions (DBC), periodic boundary conditions (PBC) or traction boundary conditions (TBC) collectively referred to as canonical boundary conditions. While DBC and PBC are widely implemented, TBC remains poorly understood, with a few exceptions. The main issue with TBC is the singularity of the stiffness matrix due to rigid body motions. The objective of this manuscript is to propose a generic strategy to implement TBC in the context of computational homogenization at finite strains. To eliminate rigid body motions, we introduce the concept of semi-Dirichlet boundary conditions. Semi-Dirichlet boundary conditions are non-homogeneous Dirichlet-type constraints that simultaneously satisfy the Neumann-type conditions. A key feature of the proposed methodology is its applicability for both strain-driven as well as stress-driven homogenization. The performance of the proposed scheme is demonstrated via a series of numerical examples. © 2016, Springer-Verlag Berlin Heidelberg.