BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Few-body problems"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemEmbargo
    Rearrangement and breakup amplitudes from the solution of Faddeev-AGS equations by pseudo-state discretization of the two-particle continuum
    (Elsevier BV, 2024-08-08) Kuruoğlu, Zeki Cemal
    The AGS equations for rearrangement transition operators in the three-particle problem are turned into a set of effective multi-channel two-body equations using the pseudo-state discretization of the two-particle resolvent. The resulting effective equations are LS-type integral equations in the spectator degrees of freedom, much like the LS equations of multichannel inelastic scattering. In particular, the effective potential matrix is real, energy-independent and non-singular, while the propagator matrix has only simple poles. Difficulties associated with the moving singularities of the effective potential matrix in the usual separable-T approach to AGS equations are avoided. After regularization of the kernel via subtraction procedures well known from two-particle scattering, the set of coupled LS-type equations in the spectator momenta are solved rather straightforwardly by the Nyström method. Solutions of effective two-body equations are then used to calculate the breakup amplitudes using the well-known relationship between rearrangement and breakup amplitudes. Calculations using a local momentum-space basis on a benchmark model of the n+d collision show that rather accurate results for elastic and breakup amplitudes can be obtained with rather small bases.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback