Browsing by Subject "Feature parameters"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Man-made object classification in SAR images using 2-D cepstrum(IEEE, 2009-05) Eryildirim, A.; Çetin, A. EnisIn this paper, a novel descriptive feature parameter extraction method from Synthetic Aperture Radar (SAR) images is proposed. The new method is based on the two-dimensional (2-D) real cepstrum. This novel 2-D cepstrum method is compared with principal component analysis (PCA) method by testing over the MSTAR image database. The extracted features are classified using Support Vector Machine (SVM). We demonstrate that discrimination of natural background (clutter) and man-made objects (metal objects) in SAR imagery is possible using the 2-D cepstrum feature parameters. In addition, the computational cost of the cepstrum method is lower than the PCA method. Experimental results are presented. ©2009 IEEE.Item Open Access Pulse doppler radar target recognition using a two-stage SVM procedure(IEEE, 2010-07-07) Eryildirim, A.; Onaran, I.It is possible to detect and classify moving and stationary targets using ground surveillance pulse-Doppler radars (PDRs). A two-stage support vector machine (SVM) based target classification scheme is described here. The first stage tries to estimate the most descriptive temporal segment of the radar echo signal and the target signal is classified using the selected temporal segment in the second stage. Mel-frequency cepstral coefficients of radar echo signals are used as feature vectors in both stages. The proposed system is compared with the covariance and Gaussian mixture model (GMM) based classifiers. The effects of the window duration and number of feature parameters over classification performance are also investigated. Experimental results are presented.Item Open Access Separating nut-shell pieces from hazelnuts and pistachio kernels using impact vibration analysis(IEEE, 2013) Habiboǧlu, Yusuf Hakan; Sevimli, Rasim Akın; Çetin, A. Enis; Pearson, T.C.In this article nut-shell pieces are separated from pistachio kernels and hazelnut kernels using impact vibration analysis. Vibration signals are recorded and analyzed in real-time. Mel-kepstral feature parameters and line spectral frequency values are extracted from the vibration signals. Feature parameters are classified using a Support Vector Machine (SVM) which was trained a priori using a manually classified data set. An average classification rate of 96:3% and 98:3%was achieved with Antepstyle Turkish pistachio nuts and hazelnuts. An important feature of the method is that it is easily trainable for other kinds of pistachio nuts and other nuts including walnuts. © 2013 IEEE.Item Open Access Target detection and classification in SAR images using region covariance and co-difference(SPIE, 2009-04) Duman, Kaan; Eryıldırım, Abdulkadir; Çetin, A. EnisIn this paper, a novel descriptive feature parameter extraction method from synthetic aperture radar (SAR) images is proposed. The new approach is based on region covariance (RC) method which involves the computation of a covariance matrix whose entries are used in target detection and classification. In addition the region co-difference matrix is also introduced. Experimental results of object detection in MSTAR (moving and stationary target recognition) database are presented. The RC and region co-difference method delivers high detection accuracy and low false alarm rates. It is also experimentally observed that these methods produce better results than the commonly used principal component analysis (PCA) method when they are used with different distance metrics introduced. © 2009 SPIE.Item Open Access VOC gas leak detection using pyro-electric infrared sensors(IEEE, 2010) Erden, Fatih; Soyer, E. B.; Toreyin, B. U.; Çetin, A. EnisIn this paper, we propose a novel method for detecting and monitoring Volatile Organic Compounds (VOC) gas leaks by using a Pyro-electric (or Passive) Infrared (PIR) sensor whose spectral range intersects with the absorption bands of VOC gases. A continuous time analog signal is obtained from the PIR sensor. This signal is discretized and analyzed in real time. Feature parameters are extracted in wavelet domain and classified using a Markov Model (MM) based classifier. Experimental results are presented. ©2010 IEEE.