BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Feature intervals"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Non-incremental classification learning algorithms based on voting feature intervals
    (1997-08) Demiröz, Gülşen
    Learning is one of the necessary abilities of an intelligent agent. This thesis proposes several learning algorithms for multi-concept descriptions in the form of feature intervals, called Voting Feature Intervals (VFI) algorithms. These algorithms are non-incremental classification learning algorithms, and use feature projection based knowledge representation for the classification knowledge induced from a set of preclassified examples. The concept description learned is a set of intervals constructed separately for each feature. Each interval carries classification information for all classes. The classification of an unseen instance is based on a voting scheme, where each feature distributes its vote among all classes. Empirical evaluation of the VFI algorithms has shown that they are the best performing algorithms among other previously developed feature projection based methods in term of classification accuracy. In order to further improve the accuracy, genetic algorithms are developed to learn the optimum feature weights for any given classifier. Also a new crossover operator, called continuous uniform crossover, to be used in this weight learning genetic algorithm is proposed and developed during this thesis. Since the explanation ability of a learning system is as important as its accuracy, VFI classifiers are supplemented with a facility to convey what they have learned in a comprehensible way to humans.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback