Browsing by Subject "Feature engineering"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Wind power prediction using machine learning and deep learning algorithms(IEEE - Institute of Electrical and Electronics Engineers, 2023-08-28) Şimşek, Ecem; Güngör, Ayşemüge; Karavelioğlu, Öykü; Yerli, Mustafa TolgaIn this study, it has been tried to predict the wind power generation values in a long-term period by using a dataset containing the wind power generation values of 10 zones using machine learning and deep learning methods. In this context, the importance of accurately predicting renewable energy production was emphasized by associating it with machine learning and deep learning methods. The methods to be used in the study were selected based on the literature review and the characteristics of the time series datasets. Since the dataset includes the basic wind components, a detailed feature analysis was performed, and the dataset was enriched with the newly added features. The hyperparameters of the utilized models were optimized for all regions in the dataset separately and the models were run with these hyperparameters. The results of the models were evaluated with different error metrics and compared with each other, and the models with the lowest error scores were determined.