Browsing by Subject "Feature dimensions"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Classification by voting feature intervals(Springer, 1997-04) Demiröz, Gülşen; Güvenir, H. AltayA new classification algorithm called VFI (for Voting Feature Intervals) is proposed. A concept is represented by a set of feature intervals on each feature dimension separately. Each feature participates in the classification by distributing real-valued votes among classes. The class receiving the highest vote is declared to be the predicted class. VFI is compared with the Naive Bayesian Classifier, which also considers each feature separately. Experiments on real-world datasets show that VFI achieves comparably and even better than NBC in terms of classification accuracy. Moreover, VFI is faster than NBC on all datasets. © Springer-Verlag Berlin Heidelberg 1997.