Browsing by Subject "Fault-tolerance"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks(Elsevier BV, 2016) Deniz, F.; Bagci, H.; Korpeoglu, I.; Yazıcı A.This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology-control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for heterogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich supernodes as well as ordinary sensor nodes that are supposed to be connected to the supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode connectivity in the presence of node failures, and ADPV achieves this goal by dynamically adjusting the sensor nodes' transmission powers. The ADPV algorithm involves two phases: a single initialization phase, which occurs at the beginning, and restoration phases, which are invoked each time the network's supernode connectivity is broken. Restoration phases utilize alternative routes that are computed at the initialization phase by the help of a novel optimization based on the well-known set-packing problem. Through extensive simulations, we demonstrate that ADPV is superior in preserving supernode connectivity. In particular, ADPV achieves this goal up to a failure of 95% of the sensor nodes; while the performance of DPV is limited to 5%. In turn, by our adaptive algorithm, we obtain a two-fold increase in supernode-connected lifetimes compared to DPV algorithm.Item Open Access Energy-efficient and fault-tolerant drone-BS placement in heterogeneous wireless sensor networks(Springer, 2020) Deniz, F.; Bağcı, H.; Körpeoğlu, İbrahim; Yazıcı, A.This paper introduces a distributed and energy-aware algorithm, called Minimum Drone Placement (MDP) algorithm, to determine the minimum number of base stations mounted on resource-rich Unmanned Aerial Vehicles (UAV-BS), commonly referred to as drone-BS, and their possible locations to provide fault tolerance with high network connectivity in heterogeneous wireless sensor networks. This heterogeneous model consists of resource-rich UAV-BSs, acting as gateways of data, as well as ordinary sensor nodes that are supposed to be connected to the UAV-BSs via multi-hop paths. Previous efforts on fault tolerance in heterogeneous wireless sensor networks attempt to determine transmission radii of the sensor nodes based on the already deployed base station positions. They assume that the base stations are stationary and arbitrarily deployed regardless of the position of the sensor nodes. Our proposed MDP algorithm takes into account the desired degree of fault tolerance and the position of ordinary sensor nodes to determine the optimal number of UAV-BSs and their locations. The MDP algorithm consists of two steps. In the first step, each sensor node chooses low-cost pairwise disjoint paths to a subset of candidate UAV-BSs, using an optimization based on the well-known set-packing problem. In the last step, depending on the desired degree of fault tolerance, MDP chooses a subset of these UAV-BS candidates using a novel optimization based on the well-known set-cover problem. Through extensive simulations, we demonstrate that the MDP achieves up to 40% improvement in UAV-connected lifetimes compared to a random and uniform distribution of UAV-BSs.Item Open Access Flora: a framework for decomposing software architecture to introduce local recovery(John Wiley & Sons Ltd., 2009-07) Sözer, H.; Tekinerdoǧan, B.; Akşit, M.The decomposition of software architecture into modular units is usually driven by the required quality concerns. In this paper we focus on the impact of local recovery concern on the decomposition of the software system. For achieving local recovery, the system needs to be decomposed into separate units that can be recovered in isolation. However, it appears that this required decomposition for recovery is usually not aligned with the decomposition based on functional concerns. Moreover, introducing local recovery to a software system, while preserving the existing decomposition, is not trivial and requires substantial development and maintenance effort. To reduce this effort we propose a framework that supports the decomposition and implementation of software architecture for local recovery. The framework provides reusable abstractions for defining recoverable units and the necessary coordination and communication protocols for recovery. We discuss our experiences in the application and evaluation of the framework for introducing local recovery to the open-source media player called MPlayer. Copyright 2009 John Wiley & Sons, Ltd.Item Open Access Integrated vehicle control using adaptive control allocation(John Wiley & Sons Ltd., 2023-04-28) Temiz, Ozan; Çakmakçı, Melih; Yıldız, YıldırayThe focus of this paper is an integrated, fault-tolerant vehicle control algorithm for the overall stability of ground vehicles. The proposed scheme comprises a high-level controller that creates a virtual control input and a low-level adaptive control allocator that distributes the virtual control effort among redundant actuators. The proposed control framework distinguishes itself from earlier results in the literature by its ability to blend active suspension, steering and traction control channels, in the presence of uncertainties and time-varying dynamics, without the need for fault identification. The control structure is validated in the simulation environment using a fourteen-degree-of-freedom non-linear vehicle model. The integrated controller is compared to the case of a conventional control approach where each control problem is solved separately. Our results show that, compared to the conventional approach, the proposed method ensures that the vehicle follows driver inputs with up to % higher longitudinal maneuver velocity, despite the presence of actuator failures and slippery road conditions. Furthermore, to demonstrate the benefit of integrating active suspension control to the overall control scheme, we replaced the suspension control of the proposed approach with an independent suspension control system for comparison purposes. We then showed that the integrated case provided % lower roll angle deviation, and % lower pitch angle deviation, in the presence of actuator effectiveness loss and adverse road conditions.