Browsing by Subject "Fast solvers"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Benchmark Solutions of Large Problems for Evaluating Accuracy and Efficiency of Electromagnetics Solvers(IEEE, 2011) Ergul, O.; Gürel, LeventWe present a set of benchmark problems involving conducting spheres and their solutions using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Accuracy of the implementation is tested by comparing the computational results with analytical Mie-series solutions. Reference solutions are made available on an interactive website to evaluate and compare the accuracy and efficiency of fast solvers. We also demonstrate the capabilities of our solver on real-life problems involving complicated targets, such as the Flamme.Item Open Access Broadband solutions of potential integral equations with NSPWMLFMA(IEEE, 2019-06) Khalichi, Bahram; Ergül, Ö.; Ertürk, Vakur B.In this communication, a mixed-form multilevel fast multipole algorithm (MLFMA) is combined with the recently introduced potential integral equations (PIEs), also called as the A-φ system, to obtain an efficient and accurate broadband solver that can be used for the solution of electromagnetic scattering from perfectly conducting surfaces over a wide frequency range including low frequencies. The mixed-form MLFMA uses the nondirective stable planewave MLFMA (NSPWMLFMA) at low frequencies and the conventional MLFMA at middle/high frequencies. Various numerical examples are presented to assess the validity, efficiency, and accuracy of the developed solver.Item Open Access Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems(Institute of Electrical and Electronics Engineers, 2008-08) Ergül, Özgür; Gürel, LeventWe present fast and accurate solutions of large-scale scattering problems involving three-dimensional closed conductors with arbitrary shapes using the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA, scattering problems that are discretized with tens of millions of unknowns are easily solved on a cluster of computers. We extensively investigate the parallelization of MLFMA, identify the bottlenecks, and provide remedial procedures to improve the efficiency of the implementations. The accuracy of the solutions is demonstrated on a scattering problem involving a sphere of radius 110 discretized with 41 883 638 unknowns, the largest integral-equation problem solved to date. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions