Browsing by Subject "Face detection"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Edge projections for eye localization(SPIE - International Society for Optical Engineering, 2008) Turkan, M.; Pardas, M.; Çetin, A. EnisAn algorithm for human-eye localization in images is presented for faces with frontal pose and upright orientation. A given face region is filtered by a highpass wavelet-transform filter. In this way, edges of the region are highlighted, and a caricature-like representation is obtained. Candidate points for each eye are detected after analyzing horizontal projections and profiles of edge regions in the highpass-filtered image. All the candidate points are then classified using a support vector machine. Locations of each eye are estimated according to the most probable ones among the candidate points. It is experimentally observed that our eye localization method provides promising results for image-processing applications.Item Open Access Human eye localization using edge projections(Institute for Systems and Technologies of Information, Control and Communication, 2007) Türkan, Mehmet; Pardas, M.; Çetin, A. EnisIn this paper, a human eye localization algorithm in images and video is presented for faces with frontal pose and upright orientation. A given face region is filtered by a high-pass filter of a wavelet transform. In this way, edges of the region are highlighted, and a caricature-like representation is obtained. After analyzing horizontal projections and profiles of edge regions in the high-pass filtered image, the candidate points for each eye are detected. All the candidate points are then classified using a support vector machine based classifier. Locations of each eye are estimated according to the most probable ones among the candidate points. It is experimentally observed that our eye localization method provides promising results for both image and video processing applications.Item Open Access Labeling of faces in personal photo albums(IEEE, 2013) Şener, Emre; Yücel, Utku Can; Aksoy, Sercan; Büyükgebiz, ibrahim; Uzun, Burak; Duygulu, PınarIn this study, we propose a system for organizing personal photo collections. Motivated with the fact that people related queries are the most desired ones, we propose a method for labeling faces in photographs. After representing the detected faces based on the descriptors extracted around facial features, the similarities between all faces in the dataset are found. When user provides labels for a few set of faces, these labels are carried out to other faces using the automatic labeling process. For this pur pose, we proposed a method based on the confidence decisions of three different methods. The user is allowed to provide feedback to increase the performance. Roth search and browsing mechanisms are provided to the user to get the pictures of single or multiple people. © 2013 IEEE.Item Open Access Naming faces on the web(2010) Zitouni, HilalIn this study, we introduce a method to name less-frequently appearing people on the web via naming frequently appearing ones first. Current image search engines are widely used for querying a person, however; retrievals are based on textual content; therefore, the results are not satisfactory. On the other hand, although; face recognition is a long standing problem; it is tested for limited sizes and successful results are acquired just for face images captured under controlled environments. Faces on the web, contrarily are huge in amount and vary in pose, illumination, occlusion and facial attributes. Recent researches on the area, suggest not to use simply the visual or textual content alone, but to combine them both. With this approach, face recognition problem is simplified to a face-name association problem. Following these approaches, in our method textual and visual information is combined to name faces. We divide the problem into two sub problems, first the more frequently appearing faces, then the less-frequently appearing faces on the web images are named. A supervised algorithm is used for naming a specified number of categories belonging to more frequently appearing faces. The faces that are not matched with any category are then considered to be the less-frequently appearing faces and labeled using the textual content. We extracted all the names from textual contents, and then eliminate the ones used to label frequentlyappearing faces before. The remaining names are the candidate categories for lessfrequently appearing faces. Each detected less-frequently appearing face finally matched to the names extracted from their corresponding textual content. In order to prune the irrelevant face images, finally, the most similar faces among this collection are found to be matched with their corresponding category. In our experiments, the method is applied on two different datasets. Bothdatasets are constructed from the images captured in realistic environments, varying in pose, illumination, facial expressions, occlusions and etc. The results of the experiments proved that the combination of textual and visual contents on realistic face images outperforms the methods that use either one of them. Besides, handling the face recognition problem as a face-name association, improves the results for the face images collected from uncontrolled environments.Item Open Access Recognizing faces in news photographs on the web(IEEE, 2009-09) Zitouni, Hilal; Bulut, Muhammed Fatih; Duygulu, PınarWe propose a graph based method in order to recognize the faces that appear on the web using a small training set. First, relevant pictures of the desired people are collected by querying the name in a text based search engine in order to construct the data set. Then, detected faces in these photographs are represented using SIFT features extracted from facial features. The similarities of faces are represented in a graph which is then used in random walk with restart algorithm to provide links between faces. Those links are used for recognition by using two different methods. © 2009 IEEE.Item Open Access Video copy detection using multiple visual cues and MPEG-7 descriptors(Academic Press, 2010) Küçüktunç, O.; Baştan M.; Güdükbay, Uğur; Ulusoy, ÖzgürWe propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies facial frames/shots in a video clip. Matching faces with extended body regions gives the flexibility to discriminate the same person (e.g., an anchor man or a political leader) in different events or scenes. In activity subsequence matching part, a spatio-temporal sequence matching technique is employed to match video clips/segments that are similar in terms of activity. Lastly, the non-facial shots are matched using low-level MPEG-7 descriptors and dynamic-weighted feature similarity calculation. The proposed framework is tested on the query and reference dataset of CBCD task of TRECVID 2008. Our results are compared with the results of top-8 most successful techniques submitted to this task. Promising results are obtained in terms of both effectiveness and efficiency. © 2010 Elsevier Inc. All rights reserved.